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Abstract. We consider asymptotically large, dense, simple graphs
constrained in a set of densities, either edges and triangles or edges
and one or more k-stars, and study the associated entropy, the goal
being to determine the structure of ‘exponentially most’ graphs
with given variable constraints. We will present evidence - proof
for edges/stars, and simulation for edges/triangles - that for all
parameter values the optimal graphs have very simple ‘multipodal’
structure, simple modifications of balanced multipartite graphs.
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Consider simple graphsG with vertex set V (G) of (labeled) vertices,
with |V (G)| = n.

For a simple graph H , its “density” in G is the fraction of all maps,
of V (H) into V (G), which preserve edges.

Temporarily specialize constraints to edge density e(G) and triangle
densty t(G). Our main tool is Zn,a

ǫ,τ , the number of graphs with
densities:

e(G) ∈ (ǫ− a, ǫ+ a); t(G) ∈ (τ − a, τ + a).

By definition (e(G), t(G)) ∈ [0, 1]2, but in fact the boundary is:

(A. Razborov, Combin. Probab. Comput. 17 (2008) 603-618.)
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Graph for (ǫ, τ) = (0.5, 0) is complete, balanced bipartite; it is

complete, balanced multipartite for the other vertices, and also

known on the rest of the boundary.

This is an example in extremal graph theory, the Mantel problem.

We aim to extend to interior, determining ‘most’ graphs with given

constraints.

For instance an optimization principle easily implies that a typical

graph with constraints τ = ǫ3 has independent edges with proba-

bility ǫ.
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Since Zn,a
ǫ,τ grows like es(n

2), we normalize as ‘entropy density’:

s = sn,aǫ,τ =
ln(Zn,a

ǫ,τ )

n2
, s(ǫ, τ) = lim

a↓0
lim

n→∞
sn,aǫ,τ .

Little is known about s(ǫ, τ) beyond existence, but we conjecture
it is piecewise smooth in general.

Key definition: A phase is a maximal connected set of

parameters where s(ǫ, τ) is analytic.
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Intuitively randomness arises as follows. Start with the assumption

that certain kinds of subgraphs H = (H1, . . . ,Hm) are ‘significant’

for a large network: edges, triangles, etc. Then determine what

most graphs are which have constrained values of the densities

tH = (tH1
, . . . , tHm

) of those type of subgraphs. Large devia-

tions theory gives probabilistic descriptions of such typical graphs

through a variational principle for the constrained entropy.

S. Chatterjee, S.R.S. Varadhan, Eur. J. Comb. 32 (2011) 1000-1017

L. Lovász, Large networks and graph limits, AMS, 2012.
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Variational Principle (R.-Sadun)

For any (ǫ, τ), s(ǫ, τ) = maxg[−I(g)], where the maximum is over

all measurable g : [0, 1]2 → [0, 1], g(x, y) = g(y, x), subject to the

constraints

e(g) =

∫
[0,1]2

g(x, y) dxdy = ǫ

t(g) =

∫
[0,1]3

g(x, y)g(y, z)g(z, x) dxdydz = τ,

and the ‘rate function’ I(g) is Shannon entropy:

I(g) =
1

2

∫
[0,1]2

g(x, y) ln[g(x, y)] + [1− g(x, y)] ln[1− g(x, y)] dxdy.
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Think of points in [0, 1] as vertices, and g(x, y) as the probability

of an edge between x and y.

Optimizing graphons for phase II (unique up to rearranged ver-

tices):
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Main result: Simulation suggests for every (ǫ, τ) there is a

partition of the vertices into M < ∞ subsets V1, V2, . . . , VM ,

and a set of well-defined probabilities qij of an edge between

any vi ∈ Vi and vj ∈ Vj. We call such states ‘multipodal’.
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Change constraint from edges/triangles to a finite set of different
k-stars, including edges. Phase space for edge/2-star is:

0 0.5 1

τ = f1(ǫ)

τ
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τ = f2(ǫ)

τ = ǫ2
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Now the variational principle is to maximize −I(g) subject to

tk(g) =

∫
[0,1]k+1

g(x, y1)g(x, y2) · · · g(x, yk) dxdy1 · · · dyk = τk,

for the desired set of k′s, including k = 1. (A star model.)

Theorem (Kenyon, R., Ren, Sadun). Every maximizing

graphon for a star model is multipodal.

In practice the state is fully described by few variables. We’ve

simulated the edge/triangle model and the 2-star model and so far

never seen more than 4 variables, each a function of the constraint

values.
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Lagrange multipliers; exponential random graphs

Lagrange technique: introduce new variables β = (β1, · · · , βm), one
for each constraint, and solve the Euler-Lagrange equations:

δ[−I(g) + β · tH(g)] = 0,

together with the constraints tH(g) = τ , for s(ǫ, τ) = maxg[−I(g)].

Alternate formulation: solve the unconstrained problem:

ψ(β) = max
g

[−I(g) + β · tH(g)],

then, if possible, solve for β such that optimizers satisfy constraints.
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This optimization problem was first carefully analyzed in:

S. Chatterjee and P. Diaconis, Ann. Statist. 41 (2013) 2428-2461.

However: Any maximizer g̃ of −I(g) + β · tH(g) is automatically

a maximizer of −I(g) for some constraints tH(g) = τ ′, namely

for τ ′ = tH(g̃). But, as noted by Chatterjee/Diaconis, it is often

impossible to find β′s such that any maximizer of −I(g) with given

constraints tH(g) = τ , will maximize −I(g) + β · tH(g). This is

especially true for k-star models; for k-star models all maximizers

g̃ of −I(g) + β1e(g) + β2tk(g) satisfy tk(g̃) = e(g̃)k, so the two

densities cannot be constrained independently.

This phenomenon is known as ‘inequivalent ensembles’.
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