

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

<ロト <回ト < 国ト < 国ト = 国

Fock space representation and perturbation analysis of Poisson functionals

Günter Last

Simons Workshop on Stochastic Geometry and Point Processes May 5-8 2014, Austin

1. Motivation of perturbation analysis

Setting

 Φ is a Poisson process on some measurable space (X, X) with intensity measure λ . This process can be interpreted as a random element in the space **N** of all integer-valued σ -finite measures on X, equipped with the usual (product) σ -field. By definition Φ has the following two properties:

The random variables Φ(B₁),...,Φ(B_m) are stochastically independent whenever B₁,..., B_m are measurable and pairwise disjoint.

$$\mathbb{P}(\Phi(B) = k) = rac{\lambda(B)^k}{k!} \exp[-\lambda(B)], \quad k \in \mathbb{N}_0, B \in \mathcal{X},$$

where $\infty^k e^{-\infty} := 0$ for all $k \in \mathbb{N}_0$.

Objective of perturbation analysis

- Let Φ be a Poisson process whose intensity measure λ_{θ} depends on a parameter $\theta \in \mathbb{R}$. For instance we might have $\lambda_{\theta} = \theta \lambda^d \otimes \mathbb{Q}$, where $\theta > 0$, λ^d is Lebesgue measure and \mathbb{Q} is a probability measure on the (mark) space \mathbb{Y} .
- Consider a function f(Φ) of (the sample path) Φ and derive a formula for the derivative

$$\frac{d}{d\theta}\mathbb{E}_{\lambda_{\theta}}f(\Phi).$$

Use Monte-Carlo integration to estimate the derivative.

2. Fock space representation

Definition

For $n \in \mathbb{N}$ let \mathbf{H}_n be the space of symmetric functions in $L^2(\lambda^n)$, and let $\mathbf{H}_0 := \mathbb{R}$. The Fock space \mathbf{H} associated with Φ (or λ) is the direct sum of the spaces \mathbf{H}_n , $n \ge 0$, equipped with the scalar product

$$\langle f,g
angle_{\mathsf{H}}:=\sum_{n=0}^{\infty}rac{1}{n!}\langle f_n,g_n
angle_n,\quad f=(f_n),g=(g_n)\in\mathsf{H},$$

where $\langle \cdot, \cdot \rangle_n$ is the scalar product in $L^2(\lambda^n)$. This is a Hilbert space.

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

Definition (Difference operator)

For a measurable function $f : \mathbf{N} \to \mathbb{R}$ and $x \in \mathbb{X}$ we define a function $D_x f : \mathbf{N} \to \mathbb{R}$ by

$$D_x f(\mu) := f(\mu + \delta_x) - f(\mu).$$

For $x_1, \ldots, x_n \in \mathbb{X}$ we define $D^n_{x_1, \ldots, x_n} f : \mathbf{N} \to \mathbb{R}$ inductively by

$$D^n_{x_1,...,x_n}f := D^1_{x_1}D^{n-1}_{x_2,...,x_n}f,$$

where $D^1 := D$ and $D^0 f = f$.

Lemma

For any $f \in L^2(\mathbb{P}_{\Phi})$

$$T_nf(x_1,\ldots,x_n):=\mathbb{E}D^n_{x_1,\ldots,x_n}f(\Phi),$$

defines a function $T_n f \in \mathbf{H}_n$.

イロト 人間 とくヨ とくきと

Theorem (L. and Penrose '11)

Let $f,g \in L^2(\mathbb{P}_{\Phi})$. Then

$$\mathbb{E}f(\Phi)g(\Phi) = (\mathbb{E}f(\Phi))(\mathbb{E}g(\Phi)) + \sum_{n=1}^{\infty} \frac{1}{n!} \langle T_n f, T_n g \rangle_n.$$

That is,

$$\mathbb{E}f(\Phi)g(\Phi)=\langle Tf,Tg\rangle_{\mathsf{H}},$$

where $Tf := (T_n f)$ and $Tg := (T_n g)$.

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

イロン イ団 とく ヨン ト モン・

= 900

Sketch of proof: Consider functions of the special form

$$f(\mu) := \exp[-\mu(\mathbf{v})], \quad g(\mu) = \exp[-\mu(\mathbf{w})]$$

where $v, w : \mathbb{X} \to \mathbb{R}_+$ vanishes outside a set in the system \mathcal{X}_0 of all measurable $B \in \mathcal{X}$ having $\lambda(B) < \infty$. Then

$$D^n f(\mu) = \exp[-\mu(\mathbf{v})](\mathbf{e}^{-\mathbf{v}} - 1)^{\otimes n},$$

and the formula for the characteristic functional of Φ implies

$$T_n f = \exp[-\lambda(1-e^{-\nu})](e^{-\nu}-1)^{\otimes n}.$$

In particular $T_n f \in \mathbf{H}_n$, $n \ge 0$.

< 回 > < 回 > < 回 >

On the one hand we have

$$\mathbb{E}f(\eta)g(\eta) = \mathbb{E}\exp[-\eta(\nu+w)] = \exp[-\lambda(1-e^{-(\nu+w)})].$$

On the other hand,

$$\sum_{n=0}^{\infty} \frac{1}{n!} \langle T_n f, T_n g \rangle_n = \exp[-\lambda(1 - e^{-\nu})] \exp[-\lambda(1 - e^{-w})] \times \\ \times \sum_{n=0}^{\infty} \frac{1}{n!} \lambda^n (((e^{-\nu} - 1)(e^{-w} - 1))^{\otimes n}) \\ = \exp[-\lambda(2 - e^{-\nu} - e^{-w})] \exp[\lambda((e^{-\nu} - 1)(e^{-w} - 1))] \\ = \exp[-\lambda(1 - e^{-(\nu+w)})].$$

Fock space representation and perturbation analysis of Poisson functionals

(日)

The proof can now be accomplished as follows:

- The set G of all linear combinations of functions of the above type is dense in L²(P_η).
- Use Hilbert space and completeness arguments to extend the result from G to L²(P_η).

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

3. Absolute continuity of Poisson processes

Setting

For any σ -finite measure λ on \mathbb{X} let \mathbb{P}_{λ} be a probability measure governing a Poisson process Φ with intensity measure λ .

Theorem

Let ν, ρ be finite measures with $\nu \ll \rho$ and let h be the density. Then $\mathbb{P}_{\nu}(\Phi \in d\varphi) = L_{\nu,\rho}(\varphi)\mathbb{P}_{\rho}(\Phi \in d\varphi)$, where

$$\mathcal{L}_{\nu,\rho}(\varphi) := \mathbf{1}\{\varphi(\mathbb{X}) < \infty\} \boldsymbol{e}^{\rho(\mathbb{X}) - \nu(\mathbb{X})} \prod_{\boldsymbol{y} \in \mathsf{supp}\,\varphi} \boldsymbol{h}(\boldsymbol{y})^{\varphi\{\boldsymbol{y}\}}.$$

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

< ロ > < 同 > < 三 > < 三 >

э

Theorem

Let ν, ρ be σ -finite measures with $\nu \ll \rho$ and let h be the density. Then $\mathbb{P}_{\nu}(\Phi \in \cdot) \ll \mathbb{P}_{\rho}(\Phi \in \cdot)$ if

$$\int (\sqrt{h}-1)^2 d\rho < \infty.$$

Otherwise $\mathbb{P}_{\nu}(\Phi \in \cdot)$ and $\mathbb{P}_{\rho}(\Phi \in \cdot)$ are mutually singular.

Idea of the proof:

If ν and λ are finite measures, then

$$\mathbb{E}\sqrt{L_{
u,
ho}(\Phi)} = \exp\Big[-rac{1}{2}\int(\sqrt{h}-1)^2d
ho\Big].$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Take a measurable partition C_n , $n \in \mathbb{N}$, of \mathbb{X} with $\nu(C_n) < \infty$ and $\rho(C_n) < \infty$. Then

$$\mathbb{P}_{\nu}(\Phi_{C_n} \in \boldsymbol{d}\varphi) = \boldsymbol{L}_n(\varphi)\mathbb{P}_{\rho}(\Phi_{C_n} \in \boldsymbol{d}\varphi),$$

where the function L_n satisfies

$$\mathbb{E}_{\rho}\sqrt{L_n(\Phi)} = \exp\Big[-\frac{1}{2}\int_{C_n}(\sqrt{h}-1)^2d\rho\Big].$$

By Kakutani's (1948) dichotomy, P_ν(Φ ∈ ·) ≪ P_ρ(Φ ∈ ·) if and only if

$$\prod_{n=1}^{\infty} \mathbb{E}_{\rho} \sqrt{L_n(\Phi)} > 0.$$

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Remark

If $\int (h-1)^2 d\rho < \infty$ then $\int (\sqrt{h}-1)^2 < \infty$. In this case the density $L_{\nu,\rho}$ of $\mathbb{P}_{\nu}(\Phi \in \cdot)$ w.r.t. $\mathbb{P}_{\rho}(\Phi \in \cdot)$ satisfies

 $\mathbb{E}_{\rho}\mathcal{L}_{\nu,\rho}(\Phi)^2 < \infty.$

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

= nar

Theorem (Finite perturbations, Molchanov and Zuyev '00)

Assume that μ is a finite measure and let $f : \mathbf{N} \to \mathbb{R}$ be such that $\mathbb{E}_{\lambda+\mu}|f(\Phi)| < \infty$. Then

$$\mathbb{E}_{\lambda+\mu}f(\Phi) = \mathbb{E}_{\lambda}f(\Phi) + \sum_{n=1}^{\infty}\frac{1}{n!}\int (\mathbb{E}_{\lambda}D_{x_1,\ldots,x_n}^n f(\Phi))\mu^n(d(x_1,\ldots,x_n)),$$

where all expectations exist and the series converges absolutely.

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

Theorem (General perturbations)

Let λ and ν be two σ -finite measures on \mathbb{X} and ρ a σ -finite measure dominating $\lambda + \nu$. Assume that

$$\int (1-h_{\lambda})^2 d\rho + \int (1-h_{\nu})^2 d\rho < \infty,$$

where $h_{\lambda} := d\lambda/d\rho$ and $h_{\nu} := d\nu/d\rho$. Let $f : \mathbf{N} \to \mathbb{R}$ be such that $\mathbb{E}_{\rho}f(\Phi)^2 < \infty$. Then

$$\mathbb{E}_{\nu}f(\Phi) = \mathbb{E}_{\lambda}f(\Phi) + \sum_{n=1}^{\infty} \frac{1}{n!} \int (\mathbb{E}_{\lambda}D_{x_{1},\dots,x_{n}}^{n}f(\Phi))(\nu-\lambda)^{n}(d(x_{1},\dots,x_{n})),$$

where all integrals exist and the series converges absolutely.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea of the proof:

The right-hand side of the asserted equation equals

$$\sum_{n=0}^{\infty} \frac{1}{n!} \int (\mathbb{E}_{\rho} L_{\lambda,\rho}(\Phi) D_{x_1,\ldots,x_n}^n f(\Phi)) (\nu - \lambda)^n (d(x_1,\ldots,x_n)),$$

where $\mathbb{P}_{\lambda}(\Phi \in d\varphi) = L_{\lambda,\rho}(\varphi)\mathbb{P}_{\rho}(\Phi \in d\varphi).$

Treat $\mathbb{E}_{\rho} L_{\lambda,\rho}(\Phi) D_{x_1,...,x_n}^n f(\Phi)$ using the Fock space representation and the identity

$$\mathbb{E}_{\rho}D_{x_1,\ldots,x_k}^k L_{\lambda,\rho}(\Phi) = \prod_{i=1}^k (h_{\lambda}(x_i) - 1).$$

Fock space representation and perturbation analysis of Poisson functionals

< 日 > < 同 > < 回 > < 回 > < □ > <

I naa

Corollary

Let $\nu = \nu_1 + \nu_2$ be the Lebesgue decomposition of ν with respect to λ . Hence $\nu_1 \ll \lambda$ and $\nu_2 \perp \lambda$. Assume that

$$\int (1-d
u_1/d\lambda)^2 d\lambda +
u_2(\mathbb{X}) < \infty$$

Let $f : \mathbf{N} \to \mathbb{R}$ be such that $\mathbb{E}_{\lambda+\nu_2} f(\Phi)^2 < \infty$ Then the variational formula holds.

Corollary

Let $\lambda = \lambda_1 + \lambda_2$ be the Lebesgue decomposition of λ with respect to ν and assume that

$$\int (1-d\lambda_1/d\nu)^2 d\nu + \lambda_2(\mathbb{X}) < \infty.$$

Let $f : \mathbf{N} \to \mathbb{R}$ be such that $\mathbb{E}_{\nu+\lambda_2} f(\Phi)^2 < \infty$. Then the variational formula holds.

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

Theorem

Let C_1 , C_2 be disjoint measurable sets such that λ and ν are equivalent on C_1 and orthgonal on C_2 . If the variational formula holds for all bounded functions f then

$$\int_{C_1} (1 - \sqrt{d\nu/d\lambda})^2 d\lambda + \lambda(C_2) + \nu(C_2) < \infty.$$
 (1)

In this case the distributions $\mathbb{P}_{\lambda}(\Phi_{C_1} \in \cdot)$ and $\mathbb{P}_{\nu}(\Phi_{C_1} \in \cdot)$ are equivalent.

Remark

If the density in (1) or its inverse is bounded on C_1 then (1) is also sufficient for the variational formula to hold for all bounded measurable functions f.

< ロ > < 同 > < 三 > < 三 >

5. Derivatives

Theorem

Let λ and ν be as above and let $f : \mathbf{N} \to \mathbb{R}$ be a measurable function such that $\mathbb{E}_{\rho} f(\Phi)^2 < \infty$. Then

$$\mathbb{E}_{\lambda+t(\nu-\lambda)}f(\Phi) = \mathbb{E}_{\lambda}f(\Phi) \\ + \sum_{n=1}^{\infty} \frac{t^n}{n!} \int (\mathbb{E}_{\lambda}D_{x_1,\dots,x_n}^n f(\Phi))(\nu-\lambda)^n (d(x_1,\dots,x_n)),$$

where the series converges absolutely for all $t \in [0, 1]$. Moreover,

$$\frac{d}{dt}\mathbb{E}_{\lambda+t(\nu-\lambda)}f(\Phi) = \int \mathbb{E}_{\lambda+t(\nu-\lambda)}D_xf(\Phi)(\nu-\lambda)(dx).$$

Theorem (Margulis-Russo type formula, Decreusefond '98)

Assume that $\int h^2 d\lambda < \infty$. Let $I \subset \mathbb{R}$ be an interval with non-empty interior and $\theta_0 \in I$. For any $\theta \in I$ let $R_{\theta} : \mathbb{X} \to \mathbb{R}$ be a measurable function such that the following assumptions are satisfied:

For all $\theta \in I$, $1 + (\theta - \theta_0)(h + R_{\theta}) \ge 0 \lambda$ -a.e.

$$\blacksquare \lim_{\theta \to \theta_0} \int R_{\theta}^2 d\lambda = 0.$$

For $\theta \in I$, let λ_{θ} denote the measure with density $1 + (\theta - \theta_0)(h + R_{\theta})$ with respect to λ . Let $f : \mathbf{N} \to \mathbb{R}$ be a measurable function such that $\mathbb{E}_{\lambda}f(\Phi)^2 < \infty$. Then

$$\frac{d}{d\theta}\mathbb{E}_{\lambda_{\theta}}f(\Phi)\Big|_{\theta=\theta_{0}}=\int(\mathbb{E}_{\lambda}D_{x}f(\Phi))h(x)\lambda(dx).$$

Günter Last

Fock space representation and perturbation analysis of Poisson functionals

< ロ > < 同 > < 回 > < 回 >

6. Perturbation analysis of Lévy processes

Definition

A Lévy process $(X_t)_{t\geq 0}$ is a \mathbb{R}^d -valued process with $X_0 = 0$ and independent and stationary increments that is right-continuous and has left-hand limits.

Definition

A *Lévy measure* is a measure on \mathbb{R}^d with $\nu(\{0\}) = 0$, and

$$\int (|x|^2 \wedge 1)\nu(dx) < \infty.$$

Fock space representation and perturbation analysis of Poisson functionals

Theorem (Lévy-Khinchin representation)

A Lévy process $(X_t)_{t\geq 0}$ can be represented as

$$\begin{aligned} X_t = &bt + \sigma B_t + \int_{|x| \le 1} \int_0^t x(\Phi(ds, dx) - ds\nu(dx)) \\ &+ \int_{|x| > 1} \int_0^t x \Phi(ds, dx), \end{aligned}$$

where $b \in \mathbb{R}^d$, σ is a $d \times d$ -matrix, $(B_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R}^d , and Φ is a Poisson process on $[0, \infty) \times \mathbb{R}^d$ with intensity measure $\lambda_1 \otimes \nu$, independent of (B_t) .

Setting

We fix a rcll process $X = (X_t)_{t \ge 0}$ and $\sigma \ge 0$, and let $\mathbb{P}_{b,\nu}$ denote a probability measure such that $\mathbb{P}_{b,\nu}(X \in \cdot)$ is the distribution of a Lévy process with characteristic triplet $(\sigma\sigma', b, \nu)$.

Definition

Let **D** denote the space of all \mathbb{R}^d -valued rcll functions on $[0, \infty)$ equipped with the product σ -field.

Definition (Difference operator)

For $w \in \mathbf{D}$ and $(t_1, x_1) \in [0, \infty) \times \mathbb{R}^d$ define $w^{t_1, x_1} \in \mathbf{D}$ by $w_t^{t_1, x_1} := w_t + \mathbf{1}\{t \ge t_1\}x_1$. For any measurable $f : \mathbf{D} \to \mathbb{R}$ the measurable function $\Delta_{t_1, x_1} f : \mathbf{D} \to \mathbb{R}$ is defined by

$$\Delta_{t_1,x_1}f(w):=f(w^{t_1,x_1})-f(w), \quad w\in \mathbf{D}.$$

Similarly as before one can iterate this definition to obtain, for $(t_1, x_1, \ldots, t_n, x_n) \in ([0, \infty) \times \mathbb{R}^d)^n$ a function $\Delta^n_{t_1, x_1, \ldots, t_n, x_n} f : \mathbf{D} \to \mathbb{R}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting

We consider three Lévy measures ν, ν', ν^* such that ν and ν' are absolutely continuous with respect to ν^* with densities g_{ν} and $g_{\nu'}$, respectively, that satisfy

$$\int (1-g_{\nu})^2 d\nu^* + \int (1-g_{\nu'})^2 d\nu^* < \infty.$$
 (2)

We also consider $b, b', b^* \in \mathbb{R}^d$ such that

$$b = b^* + \int \mathbf{1}\{|x| \le 1\} x(\nu - \nu^*)(dx),$$
 (3)

$$b' = b^* + \int \mathbf{1}\{|x| \le 1\} x(\nu' - \nu^*)(dx).$$
(4)

Fock space representation and perturbation analysis of Poisson functionals

Theorem

Assume that (2)-(4) hold. Let $f : \mathbf{D} \to \mathbb{R}$ be measurable and assume that f(w) depends only on the restriction of $w \in \mathbf{D}$ to some finite interval. If $\mathbb{E}_{b^*,\nu^*}f(X)^2 < \infty$, then

$$\mathbb{E}_{b',\nu'}f(X) = \mathbb{E}_{b,\nu}f(X) + \sum_{n=1}^{\infty} \frac{1}{n!} \int (\mathbb{E}_{b,\nu}\Delta^n f(X))(g_{\nu'} - g_{\nu})^{\otimes n} d(\lambda_1 \otimes \nu^*)^n,$$

where $\mathbb{E}_{b,\nu}\Delta^n f(X)$ denotes the function $(t_1, x_1, \ldots, t_n, x_n) \mapsto \mathbb{E}_{b,\nu}\Delta^n_{t_1,x_1,\ldots,t_n,x_n} f(X)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

I naa

Setting

Consider a Lévy measure ν and a measurable function $g: \mathbb{R}^d \to \mathbb{R}$ such that

$$\int g(x)^2 \nu(dx) < \infty.$$

Let $I \subset \mathbb{R}$ be an interval with non-empty interior and $\theta_0 \in I$. For $\theta \in I$ let $R_{\theta} : \mathbb{R}^d \to [0, \infty)$ be a measurable function such that: (i) For all $\theta \in I$, $1 + (\theta - \theta_0)(g + R_{\theta}) \ge 0 \nu$ -a.e. (ii) $\int (|x| \land 1) |R_{\theta}(x)| \nu(dx) < \infty$. (iii) $\lim_{\theta \to \theta_0} \int R_{\theta}^2 d\nu = 0$.

Theorem

For $\theta \in I$, let ν_{θ} denote the measure with density $1 + (\theta - \theta_0)(g + R_{\theta})$ with respect to ν . Let $b \in \mathbb{R}$ and define

$$b_ heta:=b+(heta- heta_0)\int \mathbf{1}\{|x|\leq 1\}x(g(x)+R_ heta(x))
u(dx), \quad heta\in I.$$

Let $f : \mathbf{D} \to \mathbb{R}$ be a measurable function with finite support such that $\mathbb{E}_{b,\nu} f(X)^2 < \infty$. Then

$$\frac{d}{d\theta}\mathbb{E}_{b_{\theta},\nu_{\theta}}f(X)\Big|_{\theta=\theta_{0}}=\iint(\mathbb{E}_{b,\nu}\Delta_{t,x}f(X))g(x)dt\nu(dx).$$

Günter Last

э.

7. References

- Baccelli, F., Klein, M. and Zuyev, S. (1995). Perturbation analysis of functionals of random measures. *Adv. Appl. Probab.* 27, 306-325.
- Blaszczyszyn, B. (1995). Factorial-moment expansion for stochastic systems. *Stoch. Proc. Appl.* 56, 321-335.
- Brown, M. (1971). Discrimination of Poisson processes. Ann. Math. Statist. 42, 773-776.
- Decreusefond, L. (1998). Perturbation analysis and Malliavin calculus. Ann. Appl. Probab. 8, 496-523.
- Last, G. and Penrose, M.D. (2011). Fock space representation, chaos expansion and covariance inequalities for general Poisson processes. *Probab. Th. Rel. Fields* **150**, 663-690.

- Last, G. (2012). Perturbation analysis of Poisson processes. *Bernoulli* 20, 486-513.
- Møller, J. and Zuyev, S. (1996). Gamma-type results and other related properties of Poisson processes. *Adv. Appl. Prob.* 28, 662–673.
- Molchanov, I. and Zuyev, S. (2000). Variational analysis of functionals of Poisson processes. *Math. Operat. Res.* 25, 485-508.
- Peccati, G. and Reitzner, M. (eds.) (2015). Stochastic analysis for Poisson point processes: Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry. Bocconi & Springer Series 7, to appear.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >