Shift-Coupling and Mass-Stationarity

Hermann Thorisson University of Iceland

Based on joint work with Günter Last

Simons Workshop on Stochastic Geometry and Point Processes University of Texas at Austin, May 6th, 2014

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Mass-Stationarity

Setting: Let $(\Omega, \mathcal{F}, \mathbb{P})$ support the random elements below.

Let *G* be a locally compact second countable topological group with left-invariant Haar measure λ .

Let ξ be a random measure on G.

Let X be a random element in a space on which G acts.

Write θ_t for the shift map placing a new origin at $t \in G$.

E.g. $X = (X_s)_{s \in G}$ a shift-measurable r.f. and $\theta_t X = (X_{ts})_{s \in G}$.

Definition

The pair (X, ξ) is called mass-stationary if for all bounded λ -continuity sets $C \subseteq G$ of positive λ -measure

 $\theta_{V_C}(X,\xi,U_C^{-1}) \stackrel{D}{=} (X,\xi,U_C^{-1}) \quad \text{(randomised self-shift-coupling)}$ where U_C is such that $\mathbb{P}(U_C \in \cdot \mid X,\xi) = \lambda(\cdot \mid C)$ and V_C is such that $\mathbb{P}(V_C \in \cdot \mid X,\xi,U_C) = \xi(\cdot \mid C)$.

The case when **G** is compact

Let *G* be compact and *S* be a random element in *G* such that $\mathbb{P}(S \in \cdot \mid X, \xi) = \xi(\cdot \mid G).$ Say that the origin is at a typical location for *X* in the mass of ξ if

 $\theta_{\mathcal{S}}(\boldsymbol{X},\xi) \stackrel{D}{=} (\boldsymbol{X},\xi).$

Theorem

Let *G* be compact. Then (X, ξ) is mass-stationary if (and only if) the origin is at a typical location for *X* in the mass of ξ .

The case when **G** is compact

Let *G* be compact and *S* be a random element in *G* such that $\mathbb{P}(S \in \cdot \mid X, \xi) = \xi(\cdot \mid G).$

Say that the origin is at a typical location for X in the mass of ξ if $\theta_{S}(X,\xi) \stackrel{D}{=} (X,\xi)$.

Theorem

Let *G* be compact. Then (X, ξ) is mass-stationary if (and only if) the origin is at a typical location for *X* in the mass of ξ .

Recall the definition of mass-stationarity:

The pair (X, ξ) is called mass-stationary if for all bounded λ -continuity sets $C \subseteq G$ of positive λ -measure

 $\theta_{V_C}(X,\xi,U_C^{-1}) \stackrel{D}{=} (X,\xi,U_C^{-1}) \quad \text{(randomised self-shift-coupling)}$ where U_C is such that $\mathbb{P}(U_C \in \cdot \mid X,\xi) = \lambda(\cdot \mid C)$

and V_C is such that $\mathbb{P}(V_C \in \cdot \mid X, \xi, U_C) = \xi(\cdot \mid C)$.

Palm Theory

The pair (X, ξ) is called a Palm version of a stationary $(\hat{X}, \hat{\xi})$ defined on some $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}})$, if for each nonnegative measurable function *f* and each Borel subset *B* of *G* with $0 < \lambda(B) < \infty$,

$$\mathbb{E}[f(X,\xi)] = \hat{\mathbb{E}}\Big[\int_{B} f\big(\theta_t(\hat{X},\hat{\xi})\big)\hat{\xi}(dt)\Big] / \lambda(B).$$

Here (X, ξ) and $(\hat{X}, \hat{\xi})$ are allowed to have distributions that are only σ -finite and not necessarily probability measures. The measure \mathbb{P} is finite if and only if $\hat{\xi}$ has finite intensity.

Theorem

 (X,ξ) mass-stationary $\iff (X,\xi)$ Palm version of a stationary pair

Corollary

 (X, λ) mass-stationary $\iff X$ stationary

Hermann Thorisson

Shift-Coupling and Total Variation Cesaro Limits

Let \mathbb{P} and $\hat{\mathbb{P}}$ be probability measures such that probabilities of invariant sets are identical (always the case they are trivial). Let (X, ξ) be a (normalised) Palm version of a stationary $(\hat{X}, \hat{\xi})$.

Theorem: Let G be general.

There exists (after extension) a random *T* in *G* such that $\theta_T(X,\xi) \stackrel{D}{=} (\hat{X},\hat{\xi})$ (shift-coupling) Then with $0 < \lambda(B) < \infty$ and $\mathbb{P}(U_B \in \cdot | X, \xi) = \lambda(\cdot | B)$, $\|\mathbb{P}(\theta_{U_B}(X,\xi) \in \cdot) - \hat{\mathbb{P}}((\hat{X},\hat{\xi}) \in \cdot)\| \leq \mathbb{E}[\lambda(B \cap TB)/\lambda(B)].$ So if there exist Folner sets $B_t, t > 0$, (amenability) then $\mathbb{P}(\theta_{U_{B_t}}(X,\xi) \in \cdot) \stackrel{TV}{\longrightarrow} \hat{\mathbb{P}}((\hat{X},\hat{\xi}) \in \cdot), \quad t \to \infty.$

Shift-Coupling and Mass-Stationarity

Shift-Coupling and Total Variation Cesaro Limits

Let \mathbb{P} and $\hat{\mathbb{P}}$ be probability measures such that probabilities of invariant sets are identical (always the case they are trivial). Let (X, ξ) be a (normalised) Palm version of a stationary $(\hat{X}, \hat{\xi})$.

Theorem: Let G be general.

There exists (after extension) a random T in G such that $\theta_{\tau}(X,\xi) \stackrel{D}{=} (\hat{X},\hat{\xi})$ (shift-coupling) Then with $0 < \lambda(B) < \infty$ and $\mathbb{P}(U_B \in \cdot | X, \xi) = \lambda(\cdot | B)$, $\|\mathbb{P}(\theta_{U_p}(X,\xi)\in \cdot) - \hat{\mathbb{P}}((\hat{X},\hat{\xi})\in \cdot)\| \leq \mathbb{E}[\lambda(B\cap TB)/\lambda(B)].$ So if there exist Folner sets B_t , t > 0, (amenability) then $\mathbb{P}(\theta_{U_{\mathcal{B}_{\iota}}}(X,\xi)\in \cdot)\xrightarrow{\mathcal{T}V}\hat{\mathbb{P}}((\hat{X},\hat{\xi})\in \cdot), \quad t\to\infty,$ and with $\hat{\mathbb{P}}(W_B \in \cdot \mid \hat{X}, \hat{\xi}) = \hat{\xi}(\cdot \mid B)$ $\mathbb{P}(\theta_{U_{\mathcal{B}_{\iota}}}(\hat{X},\hat{\xi})\in\cdot)\xrightarrow{\mathcal{T}V}\hat{\mathbb{P}}((X,\xi)\in\cdot),\quad t\to\infty.$

Let π be a measurable map taking ξ to a location $\pi(\xi)$ in *G*. Define the induced (invariant) allocation rule $\tau_{\pi} = \tau_{\pi}^{\xi}$ by

 $au_{\pi}(s) = \pi(\theta_s \xi) s, \qquad s \in G.$

Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Theorem

 (X,ξ) mass-stationary and π preserving $\Rightarrow \theta_{\pi(\xi)}(X,\xi) \stackrel{D}{=} (X,\xi)$

Let π be a measurable map taking ξ to a location $\pi(\xi)$ in *G*. Define the induced (invariant) allocation rule $\tau_{\pi} = \tau_{\pi}^{\xi}$ by

 $au_{\pi}(s) = \pi(heta_s \xi) s, \qquad s \in G.$

Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Let π be a measurable map taking ξ to a location $\pi(\xi)$ in *G*. Define the induced (invariant) allocation rule $\tau_{\pi} = \tau_{\pi}^{\xi}$ by

 $au_{\pi}(s) = \pi(\theta_s \xi) s, \qquad s \in G.$

Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Note that if ξ is a simple point process and $\pi(\xi) = 0$ when $\xi(\{0\}) = 0$ then π is preserving if and only if τ is a bijection.

Let π be a measurable map taking ξ to a location $\pi(\xi)$ in *G*. Define the induced (invariant) allocation rule $\tau_{\pi} = \tau_{\pi}^{\xi}$ by

 $au_{\pi}(s) = \pi(heta_s \xi) s, \qquad s \in G.$

Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Let π be a measurable map taking ξ to a location $\pi(\xi)$ in *G*. Define the induced (invariant) allocation rule $\tau_{\pi} = \tau_{\pi}^{\xi}$ by

 $au_{\pi}(s) = \pi(\theta_s \xi) s, \qquad s \in G.$

Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Let π be a measurable map taking ξ to a location $\pi(\xi)$ in *G*. Define the induced (invariant) allocation rule $\tau_{\pi} = \tau_{\pi}^{\xi}$ by

 $au_{\pi}(s) = \pi(\theta_s \xi) s, \qquad s \in G.$

Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Theorem (X,ξ) mass-stationary and π preserving $\Rightarrow \theta_{\pi(\xi)}(X,\xi) \stackrel{D}{=} (X,\xi)$ Theorem: Let *G* be Abelian and ξ a simple point process. Then (X,ξ) mass-stationary $\iff \forall$ preserving $\pi: \theta_{\pi(\xi)}(X,\xi) \stackrel{D}{=} (X,\xi)$ Theorem: Let $G = \mathbb{R}$ and ξ be diffuse. Then (X,ξ) mass-stationary $\iff \forall$ preserving $\pi: \theta_{\pi(\xi)}(X,\xi) \stackrel{D}{=} (X,\xi)$ The $\pi_r(\xi) = \sup\{t \in \mathbb{R} : \xi([0, t]) = r\}, r \in \mathbb{R}$, are preserving.

The property

Hermann Thorisson

 \forall preserving π : $\theta_{\pi(\xi)}(X,\xi) \stackrel{D}{=} (X,\xi)$ is not sufficient to define mass-stationarity

Stationary independent backgrounds Y

Let Y be a random element in a space on which G acts. Call Y a stationary independent background if Y is stationary and independent of (X, ξ) .

Let π be a measurable map taking (Y, ξ) to $\pi(Y, \xi)$ in *G*. Call π preserving if τ_{π} preserves ξ , that is, if $\xi(\tau_{\pi} \in \cdot) = \xi$.

Theorem: Let $G = \mathbb{R}^d$ and ξ be diffuse. Then

 (X, ξ) mass-stationary $\iff \forall$ stationary independent backgrounds *Y* and \forall preserving $\pi : \theta_{\pi(Y,\xi)}(X, \xi) \stackrel{D}{=} (X, \xi)$

Corollary: Let $G = \mathbb{R}^d$. Then with λ_1 Lebesgue measure on \mathbb{R}

 (X, ξ) mass-stationary $\iff \forall Y$ that are stationary independent backgrounds for $(X, \xi \otimes \lambda_1)$ and \forall preserving π :

 $\theta_{\pi(Y,\xi\otimes\lambda_1)}(X,\xi)\stackrel{D}{=}(X,\xi)$

Shift-Coupling

Setting: Below let (H, \mathcal{H}) be the space of (X, η, ξ) .

Let η be another random measure on *G* defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Let *K* be a σ -finite kernel from $(H, H) \otimes (G, G)$ to (G, G).

Let *K* be invariant, that is, $K(\theta_t(\cdot, \cdot), \theta_t \cdot) = K$ for all $t \in G$.

Say that *K* balances ξ and η if $\int K(((X, \eta, \xi), s), \cdot) \xi(ds) = \eta$.

Let $((X, \eta), \xi)$ be the Palm version of a stationary $((\hat{X}, \hat{\eta}), \hat{\xi})$.

Theorem

The Palm version of $((\hat{X}, \hat{\xi}), \hat{\eta})$ has the distribution $\mathbb{E}_{\mathbb{P}} \left[\int \mathbf{1}_{\{\theta_s(X, \eta, \xi) \in \cdot\}} K(((X, \eta, \xi), \mathbf{0}), ds) \right]$ if and only if *K* balances ξ and η a.e. \mathbb{P} .

Corollary: Let π take (X, η, ξ) to $\pi(X, \eta, \xi)$ in *G*.

Then $\theta_{\pi(X,\eta,\xi)}((X,\eta),\xi)$ is the Palm version of $((\hat{X},\hat{\xi}),\hat{\eta})$ if and only if $\xi(\tau_{\pi} \in \cdot) = \eta$ a.e. \mathbb{P} .

Shift-Coupling

Let $((X, \eta), \xi)$ be the Palm version of a stationary $((\hat{X}, \hat{\eta}), \hat{\xi})$.

Theorem

The Palm version of $((\hat{X}, \hat{\xi}), \hat{\eta})$ has the distribution $\mathbb{E}_{\mathbb{P}} \Big[\int \mathbf{1}_{\{\theta_{s}(X, \eta, \xi) \in \cdot\}} K(((X, \eta, \xi), 0), ds) \Big]$ if and only if K belonces ξ and π a.e. \mathbb{P}

if and only if *K* balances ξ and η a.e. \mathbb{P} .

Corollary: Let π take (X, η, ξ) to $\pi(X, \eta, \xi)$ in G.

Then $\theta_{\pi(X,\eta,\xi)}((X,\xi),\eta)$ is the Palm version of $((\hat{X},\hat{\xi}),\hat{\eta})$ if and only if $\xi(\tau_{\pi} \in \cdot) = \eta$ a.e. \mathbb{P} .

Theorem: Let the intensities of $\hat{\xi}$ and $\hat{\eta}$ be positive and finite.

There exists a Markovian *K* balancing ξ and η a.e. \mathbb{P} if and only if, given the the invariant σ -algebra of $(\hat{X}, \hat{\eta}, \hat{\xi})$, the conditional intensities of $\hat{\xi}$ and $\hat{\eta}$ are identical a.e. $\hat{\mathbb{P}}$.

The case $G = \mathbb{R}$ – Diffuse measures

Theorem: Let $G = \mathbb{R}$.

Let ξ be diffuse and have infinite mass in both directions. Then for $r \in \mathbb{R}$, the π_r defined by $\pi_r(\xi) = \sup\{t \in \mathbb{R} : \xi([0, t]) = r\}$ preserves ξ , that is, $\xi(\tau_{\pi_r} \in \cdot) = \xi$.

Thus if (X, ξ) is mass-stationary $\theta_{\pi_r(\xi)}(X, \xi) \stackrel{D}{=} (X, \xi)$ for all $r \in \mathbb{R}$.

Theorem: Let $G = \mathbb{R}$.

Let $(\hat{\xi}, \hat{\eta})$ be a stationary pair of diffuse and singular random measures with infinite mass in both directions and with the same conditional intensity given their invariant σ -algebra. Then the π defined by

 $\pi(\xi,\eta) = \inf\{t > 0 \colon \xi([0,t]) = \eta([0,t])\}$

balances ξ and η a.e., that is, $\xi(\tau_{\pi} \in \cdot) = \nu$ a.e.

Thus if $((X, \eta), \xi)$ is the Palm version of a stationary $((\hat{X}, \hat{\eta}), \hat{\xi})$ then $\theta_{\pi(\xi)}((X, \xi), \eta)$ is the Palm version of $((\hat{X}, \hat{\xi}), \hat{\eta})$.

Standard Brownian motion $B = (B_s)_{s \in \mathbb{R}}$

Let $B = (B_s)_{s \in \mathbb{R}}$ be the canonical two-sided standard Brownian motion. Let \mathbb{P}_0 be its distribution. In particular, $B_0 = 0$ a.e. \mathbb{P} . Let ℓ^x be local time at level $x \in \mathbb{R}$. With ν a probability measure, put $\ell^{\nu} = \int_{\mathbb{R}} \ell^x \nu(dx)$ and $\mathbb{P}_{\nu} = \int_{\mathbb{R}} \mathbb{P}(B + x \in \cdot) dx$.

Then *B* is stationary under the σ -finite $\mathbb{P}_{\lambda} = \int_{\mathbb{R}} \mathbb{P}(B + x \in \cdot) dx$. And (B, ℓ^{ν}) under \mathbb{P}_{ν} is the Palm version of (B, ℓ^{ν}) under \mathbb{P}_{λ} . Thus with $T_r = \pi_r(\xi) = \sup\{t \in \mathbb{R} : \ell^0([0, t]) = r\}$

under \mathbb{P}_0 : $\theta_{T_r} B \stackrel{D}{=} B$, $r \in \mathbb{R}$.

Also ℓ^0 and ℓ^{ν} under \mathbb{P}_{λ} have the same conditional intensity given the (trivial) invariant σ -algebra. Thus with

 $T^{\nu} = \pi(\ell^{0}, \ell^{\nu}) = \inf\{t > 0 \colon \ell^{0}([0, t]) = \ell^{\nu}([0, t])\}$

we have that

 (B, ℓ^{ν}) under \mathbb{P}_0 is the Palm version of (B, ℓ^{ν}) under \mathbb{P}_{λ} .