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1. Chaos expansion of Poisson functionals

Setting

η is a Poisson process on some measurable space (X,X ) with
intensity measure λ. This is a random element in the space N
of all integer-valued σ-finite measures on X, equipped with the
usual σ-field (and distribution Πλ) with the following two
properties

The random variables η(B1), . . . , η(Bm) are stochastically
independent whenever B1, . . . ,Bm are measurable and
pairwise disjoint.

P(η(B) = k) =
λ(B)k

k !
exp[−λ(B)], k ∈ N0,B ∈ X ,

where∞ke−∞ := 0 for all k ∈ N0.
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Definition (Difference operator)

For a measurable function f : N→ R and x ∈ X we define a
function Dx f : N→ R by

Dx f (µ) := f (µ+ δx )− f (µ).

For x1, . . . , xn ∈ X we define Dn
x1,...,xn f : N→ R inductively by

Dn
x1,...,xn f := D1

x1
Dn−1

x2,...,xn f ,

where D1 := D and D0f = f .

Lemma

For any f ∈ L2(Pη)

Tnf (x1, . . . , xn) := EDn
x1,...,xn f (η),

defines a function Tnf ∈ L2
s(λn).

Günter Last Normal approximation of geometric Poisson functionals



Definition

Let n ∈ N and g ∈ L2(λn). Then In(g) denotes the multiple
Wiener-Itô integral of g w.r.t. the compensated Poisson process
η − λ. For c ∈ R let I0(c) := c. These integrals have the
properties

EIn(g)In(h) = n!〈g̃, h̃〉n, n ∈ N0,

EIm(g)In(h) = 0, m 6= n.

Here

g̃(x1, . . . , xn) :=
1
n!

∑
π∈Σn

g(xπ(1), . . . , xπ(n))

denotes the symmetrization of g.
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Definition

Let L2
η denote the space of all random variables F ∈ L2(P) such

that F = f (η) P-almost surely, for some measurable function
(representative) f : N→ R.

Theorem (Wiener ’38; Itô ’56; Y. Ito ’88; L. and Penrose ’11)

For any F ∈ L2
η there are uniquely determined fn ∈ L2

s(λn) such
that P-a.s.

F = EF +
∞∑

n=1

In(fn).

Moreover, we have fn = 1
n!Tnf , where f is a representative of F .
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2. Malliavin operators

Definition

Let F ∈ L2
η have representative f . Define DxF := Dx f (η) for

x ∈ X, and, more generally Dn
x1,...,xnF := Dn

x1,...,xn f (η) for any
n ∈ N and x1, . . . , xn ∈ X. The mapping
(ω, x1, . . . , xn) 7→ Dn

x1,...,xnF (ω) is denoted by DnF (or by DF in
the case n = 1).
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Theorem (Y. Ito ’88; Nualart and Vives ’90; L. and Penrose ’11)

Suppose F = EF +
∑∞

n=1 In(fn) ∈ L2
η. Then DF ∈ L2(P⊗ λ) iff F

is in dom D (the domain of the Malliavin difference operator),
that is

∞∑
n=1

nn!

∫
f 2
n dλn <∞.

In this case we have P-a.s. and for λ-a.e. x ∈ X that

DxF =
∞∑

n=1

nIn−1(fn(x , ·)).
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Definition

Let H ∈ L2
η(P⊗ λ). Define h0(x) := EH(x) and

hn(x , x1, . . . , xn) := 1
n!EDn

x1,...,xnH(x) and assume that H is in
dom δ (the domain of the operator δ), that is

∞∑
n=0

(n + 1)!

∫
h̃2

n dλn+1 <∞.

Then the Kabanov-Skorohod integral δ(H) of H is given by

δ(H) :=
∞∑

n=0

In+1(hn).
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Theorem (Nualart and Vives ’90)

Let F ∈ dom D and H ∈ dom δ. Then

E
∫

(DxF )H(x)λ(dx) = EFδ(H).

Theorem (Picard ’96; L. and Penrose ’11)

Let H ∈ L1
η(P⊗ λ) ∩ L2

η(P⊗ λ) be in the domain of δ and have
representative h. Then

δ(H) =

∫
h(η − δx , x) η(dx)−

∫
h(η, x)λ(dx) P-a.s.
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Definition

The domain dom L of the Ornstein-Uhlenbeck generator L is
given by all F ∈ L2

η satisfying

∞∑
n=1

n2n!‖fn‖2n <∞.

For F ∈ dom L one defines

LF := −
∞∑

n=1

nIn(fn).

The (pseudo) inverse L−1 of L is given by

L−1F := −
∞∑

n=1

1
n

In(fn).
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3. Normal approximation: General results

Definition

The Wasserstein distance between the laws of two random
variables Y1,Y2 is defined as

dW (Y1,Y2) = sup
h∈Lip(1)

|Eh(Y1)− Eh(Y2)|.

Theorem (Peccati, Solé, Taqqu and Utzet ’10)

Let F ∈ dom D such that EF = 0 and N be standard normal.
Then

dW (F ,N) ≤ E
∣∣∣1− ∫ (DxF )(−DxL−1F )λ(dx)

∣∣∣
+ E

∫
(DxF )2|DxL−1F |λ(dx).
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Definition

The Kolmogorov distance between the laws of two random
variables Y1,Y2 is defined by

dK (Y1,Y2) = sup
x∈R
|P(Y1 ≤ x)− P(Y2 ≤ x)|.
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Theorem (Schulte ’12)

For F ∈ dom D and N standard normal

dK (F ,N) ≤
[
E
(

1−
∫

(DxF )(−DxL−1F )λ(dx)

)2]1/2

+ 2c(F )

[
E
∫

(DxF )2(DxL−1F )2λ(dx)

]1/2

+ sup
t∈R

E
∫

Dx1{F > t}(DxF )|DxL−1F |λ(dx),

where

c(F ) =

[
E
∫

(DxF )4λ(dx)

]1/2

+

[
E
∫

(DxF )2(DyF )2λ2(d(x , y))

]1/4 (
(EF 4)1/4 + 1

)
.
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Theorem (Hug, L. and Schulte ’13)

Let F ∈ L2
η have the chaos expansion

F = EF +
∞∑

n=1

In(fn)

and assume that Var F > 0. Assume that there are a > 0 and
b ≥ 1 such that∫

|(fm ⊗ fm ⊗ fn ⊗ fn)σ|dλ|σ| ≤
a bm+n

(m!)2(n!)2

for all σ ∈ Πmn. Let N be a standard Gaussian random variable.
Then, under an additional integrability assumption,

dW

(
F − EF√
Var F

,N
)
≤ 2

15
2

∞∑
n=1

n17/2 bn

bn/14c!

√
a

Var F
.
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Theorem (L., Peccati and Schulte ’14)

Let F ∈ dom D be such that EF = 0 and Var F = 1, and let N
be standard Gaussian. Then,

dW (F ,N) ≤ γ1 + γ2 + γ3,

where

γ2
1 := 16

∫ [
E(Dx1F )2(Dx2F )2]1/2[E(D2

x1,x3
F )2(D2

x2,x3
F )2]1/2 dλ3,

γ2
2 :=

∫
E(D2

x1,x3
F )2(D2

x2,x3
F )2 dλ3,

γ3 :=

∫
E|DxF |3 λ(dx).
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Theorem (L., Peccati and Schulte ’14)

For F ,G ∈ dom D with EF = EG = 0, we have

E
(
Cov(F ,G)−

∫
(DxF )(−DxL−1G)λ(dx)

)2

≤ 3
∫ [

E(D2
x1,x3

F )2(D2
x2,x3

F )2]1/2[E(Dx1G)2(Dx2G)2]1/2 dλ3

+

∫ [
E(Dx1F )2(Dx2F )2]1/2[E(D2

x1,x3
G)2(D2

x2,x3
G)2]1/2 dλ3

+

∫ [
E(D2

x1,x3
F )2(D2

x2,x3
F )2]1/2[E(D2

x1,x3
G)2(D2

x2,x3
G)2]1/2 dλ3.
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4. The Boolean model
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Setting

η is a Poisson process on Kd (the space of convex bodies) with
intensity measure Λ of the translation invariant form

Λ(·) = γ

∫∫
1{K + x ∈ ·}dx Q(dK ),

where γ > 0, and Q is a probability measure on Kd with
Q({∅}) = 0 and∫

Vd (K + C)Q(dK ) <∞, C ⊂ Rd compact.
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Definition

The Boolean model (based on η) is the random closed set

Z :=
⋃

K∈η
K .

Remark

The Boolean model is stationary, that is

Z + x d
= Z , x ∈ Rd .

Remark

The intersection Z ∩W of the Boolean model Z with a convex
set W ∈ Kd belongs to the convex ring Rd , that is, Z ∩W is a
finite union of convex bodies.
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4.1 Mean values

Theorem

Let ψ : Rd → R be measurable, additive, translation invariant
and locally bounded. Let W ∈ Kd with Vd (W ) > 0. Then the
limit

δψ := lim
r→∞

Eψ(Z ∩ rW )

Vd (rW )

exists and is given by

δψ = E[ψ(Z ∩ [0,1]d )− ψ(Z ∩ ∂+[0,1]d )],

where ∂+[0,1]d is the upper right boundary of the unit cube
[0,1]d . Moreover, due to ergodicity, there is a pathwise version
of this convergence.
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Example

The intrinsic volumes V0, . . . ,Vd have all properties required by
the theorem. For K ∈ Kd , they are defined by the Steiner
formula

Vd (K + rBd ) =
d∑

j=0

r jκjVd−j(K ), r ≥ 0,

where κj is the volume of the Euclidean unit ball in Rj . The
intrinsic volumes can be additively extended to the convex ring.

Definition

Let Z0 be typical grain, that is, a random closed set with
distribution Q and define

vi := EVi(Z0) =

∫
Vi(K )Q(dK ), i = 0, . . . ,d ,
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Example

The volume fraction of Z is defined by

p := EVd (Z ∩ [0,1]d ) = P(0 ∈ Z )

and given by the formula

p = 1− exp[−γvd ].

Note that

Eλd (Z ∩ B) = pλd (B), B ∈ B(Rd ),

that is δVd = p.
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Example

For any W ∈ Kd ,

EVd−1(Z ∩W ) = Vd (W )(1− p)γvd−1 + Vd−1(W )p.

Therefore the surface density δVd−1 of Z is given by the formula

δVd−1 = (1− p)γvd−1.

Definition

The Boolean model is called isotropic if Q is invariant under
rotations or, equivalently, if

Z d
= ρZ

for all rotations ρ : Rd → Rd .
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Theorem (Miles ’76, Davy ’78)

Assume that Z is isotropic and let j ∈ {0, . . . ,d}. Then

EVj(Z ∩W )− Vj(W ) = −(1− p)
d∑

k=j

Vk (W )Pj,k (γvj , . . . , γvd−1)

for any W ∈ Kd , where the polynomials Pj,k are defined below.
In particular

δVj = −(1− p)Pj,d (γvj , . . . , γvd−1).

Remark

The first formula can be extended to more general additive
functionals.
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Definition

For j ∈ {0, . . . ,d − 1} and k ∈ {j , . . . ,d} define a polynomial
Pj,k on Rd−j of degree k − j by

Pj,k (tj , . . . , td−1) := 1{k = j}

+ ck
j

k−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+...+ms=sd+j−k

s∏
i=1

cmi
d tmi ,

where
ck

j :=
k !κk

j!κj
.
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4.2 Covariance structure

Definition

For p ≥ 1 the integrability assumption IA(p) holds if

EVi(Z0)p <∞, i = 0, . . . ,d ,

Assumption

IA(2) is assumed to hold throughout the rest of this section.
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Definition

Let
CW (x) := Vd (W ∩ (W + x)), x ∈ Rd ,

be the covariogram of W ∈ Kd and

Cd (x) := EVd (Z0 ∩ (Z0 + x)), x ∈ Rd ,

the mean covariogram of the typical grain.

Theorem

We have

P(0 ∈ Z , x ∈ Z )− p2 = (1− p)2(eγCd (x) − 1
)
, x ∈ Rd ,

Var(Vd (Z ∩W )) = (1− p)2
∫

CW (x)
(
eγCd (x) − 1

)
dx , W ∈ Kd .
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Definition

Let W ∈ Kd satisfy Vd (W ) > 0. The asymptotic covariances of
the intrinsic volumes are defined by

σi,j := lim
r→∞

Cov(Vi(Z ∩ rW ),Vj(Z ∩ rW ))

Vd (rW )
, i , j = 0, . . . ,d .

Example

As it is well-known that

lim
r(W )→∞

CW (x)

Vd (W )
= 1,

where r(W ) denotes the inradius of W , it follows that

σd ,d = (1− p)2
∫ (

eγCd (x) − 1
)
dx .
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Theorem (Hug, L. and Schulte ’13)

The asymptotic covariances σi,j exist. Moreover, there is a
constant c > 0 depending only on the dimension and Λ, such
that ∣∣∣∣Cov(Vi(Z ∩ rW ),Vj(Z ∩ rW ))

Vd (rW )
− σi,j

∣∣∣∣ ≤ c
r(W )

.

Moreover, this rate of convergence is optimal.
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Main ideas of the Proof:
The Fock space representation of Poisson functionals (cf. L.
and Penrose ’11) gives for any F ,G ∈ L2

η, that

Cov(F ,G)

=
∞∑

n=1

1
n!

∫
(EDn

K1,...,Kn
F )(EDn

K1,...,Kn
G) Λn(d(K1, . . . ,Kn)).

For an additive functional ψ : Rd → R define

fψ,W (µ) := ψ(Z (µ) ∩W ),

where Z (µ) is the union of all grains charged by the counting
measure µ. Then

Dn
K1,...,Kn

fψ,W (µ)

= (−1)n(ψ(Z (µ) ∩ K1 ∩ . . . ∩ Kn ∩W )− ψ(K1 ∩ . . . ∩ Kn ∩W )).
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One can prove that for all n ∈ N and K1, . . . ,Kn ∈ Kd

|EDn
K1,...,Kn

fψ,W (η)| ≤ β(ψ)
d∑

i=0

Vi(K1 ∩ . . . ∩ Kn ∩W ),

where the constant β(ψ) does only depend on ψ,Λ and the
dimension. Applying the (new) integral geometric inequalities∫

Vk (A ∩ (K + x))dx ≤ β1

d∑
i=0

Vi(A)
d∑

r=k

Vr (K ), A ∈ Kd ,

where β1 depends only on the dimension, and∫ d∑
k=0

Vk (A ∩ K1 ∩ . . . ∩ Kn) Λn(d(K1, . . . ,Kn)) ≤ αn
d∑

k=0

Vk (A),

where α := γ(d + 1)β1
∑d

i=0 EVi(Z0) allows to use dominated
convergence to derive the result.
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4.3 Normal approximation

Theorem (Hug, L. and Schulte ’13)

Assume that IA(4) holds. Let W ∈ Kd with r(W ) ≥ 1,
i ∈ {0, . . . ,d}, and N be a centred Gaussian random variable.
Then, for all W ∈ Kd with sufficiently large inradius,

dW
(
Var(Vi(Z ∩W ))−1(Vi(Z ∩W )− EVi(Z ∩W )),N

)
≤ cVd (W )−1/2,

where the constant c > 0 depends only on Λ and the
dimension. If only IA(2) holds, then we still have convergence
in distribution.
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Main ideas of the Proof:
Let

fn(K1, . . . ,Kn)

:=
(−1)n

n!

(
EVi(Z ∩ K1 ∩ · · · ∩ Kn ∩W )− Vi(K1 ∩ · · · ∩ Kn ∩W )

)
be the kernels of the chaos expansion of Vi(Z ∩W ). Bound∫

|(fm ⊗ fm ⊗ fn ⊗ fn)σ|dΛ|σ|

using the previous integral geometric inequalities and apply one
of the previous theorems.
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Remark

The above result remains true for any additive, locally bounded
and measurable (but not necessarily translation invariant)
functional ψ, provided that the variance of
ψ(Z ∩W )/Vd (W )−1/2 does not degenerate for large W .

Theorem (Hug, L. and Schulte ’13)

If the typical grain Z0 has nonempty interior with positive
probability, then the covariance matrix (σi,j) is positive definite.
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5. Poisson-Voronoi tessellation
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Setting

η is a stationary Poisson process on Rd with unit intensity.

Definition

The Poisson-Voronoi tessellation is the collection of all cells

C(x , η) = {y ∈ Rd : ‖x − y‖ ≤ ‖z − y‖, z ∈ η}, x ∈ η.

For k ∈ {0, . . . ,d} let X k denote the system of all k -faces of the
tessellation.

Günter Last Normal approximation of geometric Poisson functionals



Theorem (Avram and Bertsimas ’93, Penrose and Yukich’05, L.,
Peccati and Schulte ’14)

Fix W ∈ Kd and let

V (k ,i)
r :=

∑
G∈X

Vi(G ∩ rW ), r > 0,

where k ∈ {0, . . . ,d}, i ∈ {0, . . . ,min{k ,d − 1}}. There are
constants ck ,i , such that

dW

(
V (k ,i)

r − EV (k ,i)
r√

Var V (k ,i)
r

,N
)
≤ ck ,i r−d/2, r ≥ 1.

A similar result holds for the Kolmogorov distance.
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Main ideas of the Proof: Use the stabilizing properties of the
Poisson Voronoi tessellation to show that

sup
r≥1

sup
x

E
∣∣DxV (k ,i)

r
∣∣5 + sup

r≥1
sup
x ,y

E
∣∣D2

x ,yV (k ,i)
r

∣∣5 <∞
and, for q := 1/20,∫

rW
P(DxV (k ,i)

r 6= 0)qdx ≤ crd ,

∫
rW

(∫
rW

P(D2
x ,yV (k ,i)

r 6= 0)qdx

)2

dy ≤ crd .
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Show with other methods that

lim inf
r→∞

r−d Var V (k ,i)
r > 0.

Combine this with (a consequence of) the second order
Poincaré inequality to conclude the result.
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