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2Graphs in Rd

A non-oriented graph G = (V ,E ) is a finite or countable set of
vertices V ⊂ Rd and a symmetric set of edges
E ⊂ {{v , v ′} : v , v ′ ∈ V }.

v v ′ ∈ V are said neighbors if {v , v ′} ∈ E . We write v ∼ v ′ and
c(x , y) = 1{x ∼ y}. Let c(x) =

∑
y c(x , y) be the number of

neighbors of x .

Both V and E may be random.

Connected graphs.

Random walk on graphs Consider a Xt discrete time random
walk on V , with transition matrix

Q(x , y) =
c(x , y)

c(x)

The walk jumps from x to y with probability inversely proportional
to the number of neighbors of x .



3Reversible measure The locally finite measure µ on V defined by
µ(x) = c(x)/Z (for any constant Z ) is reversible:

µ(x)
c(x , y)

c(x)
= µ(y)

c(x , y)

c(y)

These are the detailed balance equations. If µ is reversible, then it
is invariant. Summing on x we get the balance equations:∑

x

µ(x)
c(x , y)

c(x)
= µ(y).

If
∑

x c(x) <∞ and Z :=
∑

x c(x), then µ is a probability.

If V is finite and connected, µ is unique invariant measure.

If Z is infinite, then µ is still invariant (it satisfies the balance
equations) but it is not a probability.

Example: the measure µ(x) = constant is invariant for the nearest
neighbor random walk in Zd .



4Random walk games Let V = B ∪ ∂B. Assume for each y ∈ ∂B
there is a x ∈ B such that {x , y} ∈ E . Let g : V → R be a “prize”
function fixed on ∂B and consider the game defined on the graph
(V ,E ) by (1) start the random walk at vertex x ∈ B. (2) perform
the random walk until it hits ∂B. If it hits y ∈ ∂B, then you win
g(y).

Expected prize. Let p(x , y) be the probability that the walk
starting at x hits y ∈ ∂B before hitting any other point in ∂B.

Then if we call f (x) the expected prize, we have

f (x) =
∑
y∈∂B

p(x , y)f (y)

and, conditioning to the first jump of the walk:

f (x) =
1

c(x)

∑
z

c(x , z)
∑
y∈∂B

p(z , y)f (y) =
1

c(x)

∑
z

c(x , z)f (z)

with f (y) = g(y) for y ∈ ∂B.
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In other words,

∆f (x) :=
1

c(x)

∑
y

c(x , y) [f (y)− f (x)] = 0

(the Laplacian).

We have partitioned V = B∪̇∂B, B is the bulk and ∂B is the
boundary.

Examples Nearest neighbors Random walk in a finite interval
[a, b] ⊂ Z. f satisfies:

f (x) =
f (x + 1) + f (x − 1)

2
, a < x < b

that is, must be linear with values f (a) = g(a) and f (b) = g(b).
Hence

f (x) =
b − x

b − a
g(a) +

x − a

b − a
g(b)
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Harmonic functions f : V → R is harmonic in x if ∆f (x) = 0. f
above is harmonic in B and has its values fixed at ∂B.

Harmonic functions attain their extrema at the boundary:

Lemma (Maximun principle) Consider a function g : V → R and
V = B∪̇∂B. Let f be a harmonic function on B with boundary
conditions f (x) = g(x) for x ∈ ∂B. Then maxx∈V f (x) ∈ ∂B and
minx∈V f (x) ∈ ∂B.

Proof Since a harmonic function f equals the average of the
neighbors, if for some x ∈ B, f (x) = M, the maximum, then all
neighbors of x must be equal to M. Inductively, we show that all
vertices, including the boundary ones, must attain the
maximum.

Lemma (Uniqueness) If V is finite, then there is only one
harmonic function for any partition B and ∂B and any
g : ∂B → R.



7Proof Let f , h harmonic with boundary condition g . Then f − h
is harmonic with boundary conditions f (x)− h(x) ≡ 0, for x ∈ ∂B.
Since the max and the min are zero, f − g ≡ 0 in V .

Symmetric random walk: f linear en [−N,N]

Planes in two dimensions.

Martingales Let Fn be a filtration. A martingale with respect to
the filtration Fn is a stochastic process satisfying

E [Mt+1|Ft ] = Mt . (∗)

Consider a graph (V ,E ) with V ∈ Rd and the translation operator
τx(V ,E ) = ({v − x : v ∈ V }, {{v − x , v ′ − x} :, {v , v ′} ∈ E}), the
graph from the point of view of x .

Let Xn be a random walk on G = (V ,E ) and Gn = τXnG , the
graph as seen from the point of view of the random position Xn.

Let Fn = σ(G1, . . . ,Gn), the filtration induced by the process Gn.
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Let τ = min{n ≥ 0 : Xn ∈ ∂B}, a stopping time for Fn. Let
X̃t := Xτ∧t be the process stopped at ∂B: when it reaches a state
in ∂B, it stops.

Lemma If h is harmonic in B, then Mt := h(X̃t) is a martingale.

Proof If x ∈ ∂B and Xt = x , then Xt+1 = x and (*) holds.

Ft is the filtration generated by X0, . . . ,Xt . If x ∈ B,

E [Mt+1|Xt = x ] =
1

c(x)

∑
y

c(x , y)h(y) = h(x)

because h is harmonic in x . Hence, E [Mt+1|Ft ] = Mt .

If we start with a fortune h(x), then h(Xt) is the (random)
expected fortune after t steps and Eh(Xt) = h(x). So that the
expected fortune at any time is the same as the initial fortune.



9If you start with a fortune h(x) at x , then the expected final
fortune is

E (Mτ |X0 = x) =
∑
y∈∂B

h(y)P(Xτ = y |X0 = x) = h(x) = EM0

Harmonic functions minimize elestrostatic energy

For a function f : V → R let

E(f ) =
1

2

∑
x ,y∈V

c(x , y)(f (x)− f (y))2

Fix subgraph B ⊂ V and a boundary condition function
g : ∂B → R.

Let Mx : RB → RB be the operator defined by

Mx f (y) :=

{
f (y) y 6= x∑

y
c(x ,y)
c(x) f (y) y = x .



10Lemma If f : V → R such that f (x) = g(x) for x ∈ ∂B, then
E(My f ) ≤ E(f ) for all y ∈ B.

Proof This is an exercise of descriptive statistics: the expectation
of a discrete random variable minimizes the weighted sum of the
squares.

Lemma Let f : V → R be a function such that f (x) = g(x) for
a ∈ ∂B. Let yn be a sequence of vertices in B containing infinitely
many times each vertex. Let f0 = f and for n ≥ 1, fn = Myn fn−1.
Then limn fn = h, the unique harmonic function on B with
boundary conditions g.

Proof Assume first that min g ≤ f ≤ max g . Take f = min g . By
the previous lemma, E(fn) is non increasing and bounded by E(f ),
hence E(fn) converges and fn(x) is uniformly bounded in n and
x ∈ V . On the other hand, fn ≤ fn+1, and fn ≤ max g . Let
f∞ = limn fn. Let E(f∞). Finally Mx f∞ = f∞ for all x ∈ B because
the sequence visits infinitely often the site x . Hence, f∞ is
harmonic. The same argument shows that if f = max g , then



11limn fn is harmonic. By uniqueness of the harmonic function, both
limits agree. By monotonicity, any function between the min and
the max of g must converge to the harmonic function.

Since there is a unique harmonic function, the lemma follows.

Corollary Let f : V → R such that f (x) = g(x) for x ∈ ∂B. Then
E(f ) ≥ E(h), where h is the unique harmonic function in B with
boundary conditions g.

Proof Immediate.

Proposition f is harmonic in B with boundary conditions g in ∂B
if and only if f is a minimizer of the set

{E(f ,B, g) : f : V → R, f (x) = g(x), x ∈ ∂B} (1)

Proof In a harmonic function the height at x is the mean of the
heights at the neighbors of x . The mean minimizes the sum of the
squares of the differences of the heights. Hence if f is a minimizer,



12

then each height in B must be the mean of the neighbors
(otherwise I could move the height at one site and get a strictly
smaller height). Reciprocally, let gn be a sequence of functions
such that E(gn)↘ the infimun of the set (1). Since by the
previous lemma E(gn) ≥ E(h) for all n, the infimun dominates
E(h). Hence h is the unique minimizer.

Construction of harmonic functions in finite graphs

Problem: Consider the finite graph (V ,E ) with V = B∪̇∂B and a
function a : ∂B → R and construct H : V → R harmonic in B and
with boundary conditions H(x) = g(x) for x ∈ ∂B.

Since the graph is finite, we know there is a unique solution H and
that this solution minimizes que electrostatic energy E :

E(H) ≤ E(f ), for all f : V → R with f (x) = H(x) for x ∈ ∂B.



13Solution to a linear problem We have a system of linear
equations

H(x) =
1

c(x)

∑
y∈V

c(x , y)H(y), x ∈ B.

with boundary conditions H(y) for y ∈ ∂B. In matrix form, this is
the solution of

QBH = U

where QB is random walk matrix QB given by Q(x , y) = c(x ,y)
c(x) ,

x , y ∈ B and

U(x) = −
∑
y∈∂B

c(x , y)

c(x)
H(y), x ∈ B.

So that, if the matrix QB is invertible,

H = Q−1
B U.
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Harness process ηt on RB . Fix the values of ηt(x) = H(x) for
any x ∈ ∂B and starting with a surface η0, at rate 1 the height of
the surface at vertex x ∈ B is updated to the mean value of its
neighbors.

So that, we have a continuous time jump Markov process on RV

whose generator is

Lf (η) =
∑
x∈B
Lx f (η)

with

Lx f (η) = f (Mxη)− f (η)

Since the mean minimizes the sum of the squares, updating vertex
x strictly decreases E(ηt), unless ηt is harmonic in x . More
precisely

LxE(η) ≤ 0, x ∈ V

and the inequality is strict unless η is harmonic in x .



15Lemma ηt converges almost surely to h starting from any
configuration η0.

Proof In the graphical construction of the process apply the
previous lemma to the sequence yn of updating sites. This holds
because all sites will be updated infinitely often for almost all
realization of the Poisson processes. (Finite volume).



16Harmonic functions in infinite graphs

Consider the infinite graph G = (Z2,E2), with
E2 = {{x , y} ⊂ Z2 : |x − y | = 1}, the edges induced by nearest
neighbors.

No boundary conditions A harmonic function in G is function
f : V → R satisfying

∆f (x) = 0, for all x ∈ V

Let the “energy” be defined by

E(f ) =
1

2

∑
x ,y∈V

c(x , y)(f (x)− f (y))2

not well defined in infinite volume.

Harmonic functions “minimize energy” as follows:

Let h harmonic and g ≡ h in V \ V ′, a finite subset of vertices.
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Then E(g)− E(h) > 0 if g 6= h.

A hyperplane is a function f : Z2 → R given by f (x) = 〈x , y〉+ c ,
where 〈·, ·〉 is inner product, y is an arbitrary vector in R2 and c is
a constant.

Hyperplanes in Z2 are harmonic functions.

The trivial harmonic function is h(x) ≡ 0.

Saddle harmonic function x = (x1, x2) ∈ Z2. The function
h(x1, x2) = x2

1 − x2
2 is harmonic.

Liouville theorem: if |h(x)− h(y)|c(x , y) <∞, for all x , y ∈ Zd ,
then h is linear.

With boundary conditions Can also partition V = B ∪ ∂B and
g boundary condition and ask for h harmonic in B with h = g in
∂B. If the random walk is transient, then one needs to add a



18boundary condition at infinity. Let τ be the hitting time of ∂B and
c be the “condition at infinity”. Then

h(x) = Eg(X x
τ )

with the convention g(X x
∞) = c . For instance, g(a) = 0, g(b) = 1

for arbitrary points in Zd .

Discrete harness process Update each vertex at each time to the
average of the neighbors simultaneously: Fix η(·, 0) : V → R and
define for t ≥ 0,

η(x , t + 1) =
∑
y

c(x , y)

c(x)
η(y , t) (2)

in “pde” form:

η(x , t + 1)− η(x , t) = ∆η(x , t), x ∈ Zd , t ∈ N

with initial condition η(·, 0)



19Harmonic functions are invariant for ηt . η(·, t) = h if η(·, 0) = h.

There are also “travelling harmonic functions”:

Quadratic: η(x , t) = ax2 + 2at + b is a solution of (3).

Exponential: H(x) = aebx + bt is a solution of (3).

Random graphs

Consider a translation invariant point process S ⊂ Rd of rate 1
and a graph having S as vertices. The edges may be random or a
deterministic function of S .

Palm version: So the process S conditioned to have a point at
the origin.

Point translation invariant. 0 ∈ So and for any bounded Λ ⊂ Zd ,

Ef (So) =
1

`(Λ)

∑
s∈Λ

Ef (τsS)

Use notation S instead of So .



20Examples:

1. Infinite cluster of supercritical (bond or site)
percolation in Zd .

Take the cluster and eliminate the dead ends: iteratively eliminate
vertices having only one neighbor.

2. Point process with random energy edges. At each pair of sites
s, s ′ ∈ S , include the edge {s, s ′} with probability exp(−β‖s − s ′‖).

For β sufficiently small there is an infinite cluster. Eliminate dead
ends and consider the graph induced by the infinite cluster.

3. Delaunay triangulation of a translation invariant point
process. We will work in this case with S Poisson(1).



21Poisson process in Rd . S ∪ {0} is the Palm version of a
homogeneous Poisson process on Rd (with a point at the origin).

P, E probability and expectation on N induced by S .

points s ∈ S and sites x ∈ Rd

Figure: Poisson process.



22Voronoi tessellation. Voronoi cell

Vor(s) = {x ∈ Rd : |x − s| ≤ |x − s ′|, for all s ′ ∈ S \ {s}}

Voronoi neighbors share a (d − 1)-dimensional boundary.

c(s, s ′) := 1{s and s ′ are neighbors}
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Delaunay triangulation is the graph G = (S , E) with
E := {(s, s ′) : s and s ′ are neighbors}.



24Surfaces are functions η : Ξ1 → R, where

Ξ1 := {(s,S) ∈ Rd ×N : s ∈ S}.

We look for harmonic surfaces, that is, satisfying for all s ∈ S

∆h(s,S) = 0

The surface h(s,S) ≡ 0 is trivially harmonic.



25Thermodynamical limit with plane boundary conditions.

y ∈ Rd , c ∈ R. Let π ∈ Ξ “plane” π(s,S) := 〈s, y〉+ c .

Look for a harmonic function “associated” to each plane π.

Let Λ ⊂ Rd be a bounded set.

Let hΛ(·, S) : S → R be the unique harmonic surface in S ∩ Λ with
boundary conditions

hΛ(s, S) := π(s,S), s ∈ S ∩ Λc

Explicit solution in finite volume:

hΛ(s) =
∑

y∈S∩Λc

ρ(s, y)π(y)

where ρ(s, y) is the probability that a random walk on (S , E)
starting at s hits y before any other point in S ∩ Λc .

Problem Is there a limit as Λ↗ Zd of hΛ?



26Explicit computation of the thermodynamic limit in d = 1

d = 1, take π(s,S) = s for all s ∈ S .

Write hN instead of h[−N,N] and attempt to compute limN hN .

Label points: S = {. . . , s−1, 0, s1, s2, . . . } s0 = 0, si < si+1

hN(sk) = sRN

k − LN

RN − LN
+ sLN

RN − k

RN − LN

LN is the label of the first point to the left of −N.

RN is the label of the first point to the right of N.

sLN = −N− exp(1), sRN
= N+ exp(1)

hN(0) =
N

RN − LN
(−LN − RN + O(1)) =

−LN − RN

2

because (RN − LN)/N converges to 2 in probability

hN(0) =
−LN − RN

2
∼ N(0,N/2)



27(difference between to independent Poisson of mean N)

Hence |hN(0)| ∼
√

N. So that hN(0) delocalizes as N →∞.

Gradients: Supposse now that si and si+1 are successive points.
Hence

hN(si+1)− hN(si ) = 1

In this case, if sk is the k-th point of S , then the limiting harmonic
function as seen from the origin is

h(sk)− h(0) = k

Let π(s) = s be the line with inclination 1.

Let Cen(k) = arg min{|s − k | : s ∈ S}, the center of the Voronoi
cell containing k .

[hN(Cen(k))− hN(0)]− π(k)

k
=

S [0, k]− k

k
∼ N

(
0,

1

k

)
.



28So that h(Cen(k))− k is of order
√

k. We say that h is a
sub-linear perturbation of the linear function π(k) ≡ k .

h(s)− π(s) is called the corrector.

Surface Inclination.

u ∈ Rd unit vector. Surface η has inclination Iu(η) in the direction
u if the following limit exists and does not depend on s

Iu(η) := lim
K→∞

η(Cen(s + Ku))− η(s)

K
P-a.s. (3)

where Cen(x) is the point in S closest to x ∈ Rd .



29Harness process.

Let Msη the surface obtained by substituting the value of η(s)
with the average of the heights at the neighbors of s:

(Msη)(v) =

{
1

c(s)

∑
s′∈S\{s} c(s, s ′) η(s ′), if v = s

η(v), if v 6= s

The harness process ηt is the Markov process with generator

Lf (η) =
∑
s∈S

[f (Msη)− f (η)]

At rate 1, the height at s is updated to the average of the heigths
at the neighbors of s.



30Construction of the harness process

Enumerate the points of S in a point-translation invariant way
(Holroyd-Peres).

Associate to each point s ∈ S a (time) one-dimensional Poisson
process or rate 1.

These processes are independent.

Use these times to update the corresponding site.

Use the same notation P and E for the product of the law of S and
the time Poisson processes.



31More definitions

Fields are functions ζ : Ξ2 → R where

Ξ2 = {(s, s ′, S) ∈ Rd × Rd ×N : s, s ′ ∈ S}.

Will drop dependence on S .

Gradient of a surface η is the field ∇η defined by

∇η(s, s ′) = (η(s ′)− η(s))

Let τsS = {s ′ − s, s ′ ∈ S}.

A field ζ : Ξ2 → R is covariant if

ζ(s ′ − s, s ′′ − s, τsS) = ζ(s ′, s ′′, S)



32Theorem [F., Grisi, Groisman]

(a) if η0(s) = s1 where s1 is the first coordinate of s, then
ηt(·)− ηt(0) converges in L2 to a surface h : Ξ1 → R:

lim
t→∞

E[(ηt(s)− ηt(0))− h(s)]2 = 0

E is with respect to the product measure of the spacial and
temporal Poisson processes.

(b) The limit h is harmonic, has covariant gradient and
inclination 1 in the direction e1, P-a.s..

Percolation: Berger-Biskup, Mathieu-Piatnitski;

Poisson + energy marks: Caputo-Faggionato-Prescott.



33The space of fields as a Hilbert space

Ξ2 = {(s, s ′, S) ∈ Rd × Rd ×N : s, s ′ ∈ S}.

S is Palm of a Poisson process in Rd with law P, E.

For a field ζ : Ξ2 → R define

C(ζ) = E

[∑
s∈S

c(0, s)ζ(0, s)

]
.

Hilbert space H := L2(Ξ2,R, C). Inner product: for fields ζ, ζ ′

in H:

C(ζ · ζ ′) = E

[∑
s∈S

c(0, s)ζ(0, s)ζ ′(0, s)

]
.



34Cesàro limit of covariant fields

Let ζ ∈ H be a covariant field and define

C (ζ) := lim
Λ↗Rd

1

2|Λ|
∑

s∈S∩Λ, s′∈S
c(s, s ′)ζ(s, s ′).

Since S is ergodic, by the Point Ergodic Theorem we have that
almost surely

C (ζ) = C(ζ)

and
C (ζ, ζ ′) = C(ζ, ζ ′)



35Inclination as inner product

Fix unitary vector e ∈ Rd

For Voronoi neighbors v ,w ∈ S define:

p(v ,w) := (d − 1)-dimensional common side of cells of v and w

pe(v ,w) := (d − 1)-dimensional Lebesgue measure of the
projection of p(v ,w) over the hiperplane perpendicular to e.

ve := e〈v , e〉 (projection of v over the line determined by e).

Define the field κe by

κe(v ,w) :=
1

2
sg(ve − we) pe(v ,w) c(v ,w)

Remark: κv ∈ H is covariant.
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Figure: Definition of the field κe with e = (1, 0).



37From the definition:

∑
s′∈S

κe(0, s ′) =
1

2

∑
s′

c(0, s ′) sg(s ′e) pe(0, s ′) = 0

the projections of the “negative” sides has the same area as the
projections of the “positive” sides.

By covariance, for all s ∈ S :∑
s′∈S

κe(s, s ′) = 0

Anti-symmetry:
κe(s,w) = −κe(w , s)

Also gradient is anti-symmetric.



38Second definition of inclination:

Je(η) := C(∇η · κe)

Je(η) =
1

2
E
∑
s∈S

c(0, s) (η(s)− η(0))κe(0, s)

= lim
Λ↗Rd

1

2|Λ|
∑

s∈S∩Λ, s′∈S
c(s, s ′) (η(s ′)− η(s))κe(s, s ′).



39Proposition Let η be a surface with covariant ∇η ∈ H. Then

Ie(η,So) = Je(η) P-a.s.

Proof.

Figure: Points contributing to the inclination along the line y = 0.



40Inclination is invariant for the dynamics:

Je(ηt) = Je(η0)

Why? Updating the origin gives zero contribution: Let η̃ = M0η

Je(η)− Je(η̃) = E
∑
s′

κe(0, s ′)[∇η(0, s ′)−∇η̃(0, s ′)]

= E
[
(η̃(0)− η(0))

∑
s′

c(0, s ′) sg(s ′e) pe(0, s ′)
]

= 0

because the (d − 1)-Lebesgue measure of the projections with
negative contribution coincides with the one of the projections with
positive contribution.

The contributions of the updating of neighbors of the origin are
also zero by translation invariance and covariance of the fields
involved.



41Sketch of proof of the Theorem

(a) Convergence of the gradients of the harness process starting
with an hyperplane to a limit in L2(C).

(b) Limiting field is the gradient of a harmonic surface with
inclination 1

To show (a) we show:

(1) the gradients of the harness process starting with a hyperplane
converge to a field

(2) the limit field is the gradient of a harmonic surface with
inclination 1. 1 in direction e1.

Recall ηt is the harness process with η0 = “hyperplane”.



42Ingredients:

1) Integration by parts formula:

ζ : Ξ2 → R covariant field

ψ : Ξ1 → R translation invariant surface (ψ(v , S) = ψ(0, τvS))

such that ∇ψ, ζ ∈ H. Then

C(∇ψ · ζ) = −E[ψ(0)divζ(0)]

where the divergence is given by

divζ(s) =
∑
s′∈S

ζ(s, s ′)

Used for ψt = ηt − η0.

Write ηt = η0 + ψt , where η0 is a “hyperplane” and ψt is
translation invariant.



432) Square of gradients decrease: For all t > 0

d

dt
C(|∇ηt |2) = −2E

[
|∆ηt(0)|2

c(0)

]
,

3) Laplacian converges almost surely to 0

∞ > C(|∇η0|2) ≥ lim
t→∞

C(|∇ηt |2) = 2

∫ ∞
0

E

[
|∆ηt(0)|2

c(0)

]
dt,

4) Weak convergence of ∇ηt to ζ∞ by subsequences:

By (2) there exists a subsequence {tk} and a field ζ∞ ∈ H such
that

lim
k→∞

C(∇ηtk · ζ) = C(ζ∞ · ζ),

for all ζ ∈ H.



445) Uniqueness of the limit:

Using integration by parts,

C(∇η0 · ζ∞) = C(|ζ∞|2).

C(ζ̃∞ · ζ∞) = C(|ζ∞|2) = C(|ζ̃∞|2).

6) Convergence in L2 and a.s. along subsequences.

Using Holder and convergence of Laplacian to zero,

lim
t→∞

C(|∇ηt − ζ∞|2) = 0.

7) Limit ζ∞ is covariant.

Follows from the covariance of ∇ηt for each t and a.s.
convergence along subsequences.



458) The limiting field has zero divergence. Hölder:

lim
t→∞

E(c(0)−2|∆ηt − divζ∞|2) ≤ lim
t→∞

C(|∇ηt − ζ∞|2) = 0.

implies
div(ζ∞) = 0 a.s.

9) The limit is a gradient field

Convergence in L2 implies there exists a subsequence converging
almost surely. This sequence must satisfy the cocycle property.

10) The limit is the gradient of a harmonic surface

Follows from (8) and (9).

11) The limit has the same inclination as η0

This is because the inclination J is invariant for the dynamics:

Je(ηt) = C(∇η0 · κe) = C(∇ηt · κe) −→ C(∇η∞ · κe)



46Generalization

Theorem holds if S is the Palm version of a stationary point
process in Rd and

A1 The law of S is mixing. (To get one-dimensional LLN)

A2 For every ball B ⊂ Rd , |S ∩ ∂B| < d + 2.

A3 E exp(βc(0, S)) <∞ for some positive constant β.

A4 C(ω2
u) <∞ for every u ∈ Rd .

A5 S aperiodic, meaning that P(∃x ∈ Rd \ {0} : τxS = S) = 0.

A6 E[
∑

s∈S c(0, s)|s|r ] <∞ for some r > 4.

A7 S = {sn; n ∈ Z}, and τsnS
law
= S for every n ∈ Z.

A8 E[`(Vor(0,S))2] <∞.



47Open problems

Uniqueness of the harmonic function with given inclination.

Uniform sublinearity of the corrector.

Thermodynamic limit.

Almost sure convergence of ∇ηt to ∇h

Other Hamiltonians.

Harmonic graphs

Coordinates of a harmonic graph are harmonic surfaces:

Let H : S → Rd and h1(s), . . . , hd(s) the coordinates of H(s).

Graph H is harmonic iff h1, . . . , hd are harmonic surfaces.

Let H = (h1, . . . , hd). Then

Graph (H(S), Ẽ) is a sub-linear perturbation of S
iff coordinate hi has inclination 1 in the direction ei for all i .



48Harmonic sub-linear deformation

A graph with vertices in Rd is harmonic if
each point is located in the baricenter of its neighbors.

Goal: move the points of S such that keeping the Delaunay
neighborhood, the resulting graph is harmonic. H : S → Rd s.t.

(1) H(S) is harmonic:

H(s) =
1

c(s)

∑
s′∈S

c(s, s ′) H(s ′), for all s ∈ S .

where c(s) =
∑

s′∈S c(s, s ′) is the number of neighbors of s.

(2) H(S) is a sublinear deformation of S :

lim
K→∞

|H(Cen(Ku))− Cen(Ku)|
|K |

= 0, u unit vector.

Corrector. H(s)− s is called corrector.
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Figure: Poisson process.
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Figure: Delaunay triangulation of the above Poisson process.
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Figure: Harmonic deformation of above Delaunay triangulation.
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Figure: Voronoi cells of the Poisson process.
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Figure: Voronoi cells of the harmonic graph.



54Background

Harmonic deformation graph constructed in two settings:

Percolation clusters:

Berger and Biskup (2007) (our motivation)

Mathieu and Piatnitski (2007)

Barlow and Deuschel (2010)

Poisson process with energy marks:

Caputo, Faggionato and Prescott (2010)

Both approachs use static methods.



55Application to random walk in Delaunay triangulation.

Y S
t : random walk in the Delaunay triangulation with generator

LS f (s) =
∑
s′∈S

c(s, s ′)[f (s ′)− f (s)]

Since the graph H is harmonic, H(Y S
t ) is a martingale and so

satisfies the invariance principle P-a.s..

To show the invariance principle for Y S
t it suffices uniform

sub-linearity of the corrector H(s)− s (but seems too much).

(OK in d = 2 à la BB, or Heat Kernel Estimates à la Barlow)

Positive diffusion easy.

Berger-Biskup, Mathieu-Piatnitski, Sidoravicius-Snitzman,
Caputo-Faggionato-Prescott and many others.
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