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The p-q discrete time random walk on {0} UN absorbed at 0.

Qx,x+1)=p, Qx,x—1)=gq, Q(0,0)=1
p<aq.
Conditioned distribution:
Initial distribution v, a probability on N.

Distribution of walk conditioned to stay in N during [0, n]:

VToly) = vQ"(y)

=i, YES (1)

Def: v is a quasi stationary distribution (qsd) if

vT,=v, n>1.



Absorption time of gsd is exponential:
P(r¥ > t) = e kW)
There are infinitely many qsd ordered by absorption rate
R(v)=qu(1) € 0,q(1 = VA, A=p/q.
The minimal gsd v, is negative binomial (2, \ﬁ)
Vain(¥) = (1= VA)2x (VA x>1. (2)

and the others are given in function of (1) < (1 — \5\)2 by

V(x) = y(Cl) K/\ +1 —21/(1) + C)X B ()\ +1 —2y(1) — c>x] 3)

where ¢ = [(v(1) — A — 1)? — 4)\]*/2. See Cavender [1], pag 585.



The Yaglom limit of v is
limvT,,
n

if the limit exists and is a probability.

Stochastic domination:

N is well ordered with minimal state 1: 1 < x for all x € N.

v =<1 ifandonlyif vf <V'f forall non decreasing f : N — R

Coupling: v < v/ if and only if there exists coupling 7 on N x N
with marginals v and v/ such that 7((x,x") : x < x’) = 1.



Let §; measure concentrating mass on 1.

Interested in Yaglom limit starting from 4;:
lim (51 Tgn, lim (51 T2n+1
n n

Period 2: starting from 1, visits odd sites at even times and even
sites at odd times.

v(-|odd) be the measure v conditioned to odd values

v(-|even), conditioned to even values.

If v is gsd, then

v(-lodd) T, = v(-|odd), v(-lodd) Tap+1 = v(-|even)



Theorem 1

i. The sequence of measures (81 Top, n > 0) is monotone:
01 Ton < 01 Tont2, for all n > 0.
ii. If v isa qgsd, then
91 Ton < v(-|odd), 01 Tont1 < v(-|even)
iii. Yaglom limit selects minimal qgsd:
Ii’r1n 01 Tan = Vpmin(-lodd), Iirr7n 01 T2n+1 = Vmin(-|even)
and vy < v, for any gsd v.

Background

Yaglom limit (iii) proven by Seneta, Seneta and Vere Jones, Van
Doorn and Schrijner using explicit calculations.



Trajectory distribution
For time integers n < m, trajectories in N:
Ny ={x)" = (Xn,.. ., Xm) : xk €S, k=n,...,m}

Define

(v, Q)X = ”(X")Q(X;’f"ggn;'_; %()xm_l,m) @)

Distribution of chain X" = (X,, ..., X;) with initial distribution
P(X, = -) = v conditioned to stay in S during [n, m].

VTm—n(y) = Z MT(% Q)(th-",Xm—laY)' (5)

(X,,,.,.,xm,1)GX,',"_1

The m-th marginal of u'(v, Q) has distribution v Tp,_.



Domination

Partial order on N is coordinatewise order of trajectories:
X' <y if xx < yj for all k € [n, m].

Order of measures on NJ":

p =< ' iff there is a coupling ji with marginals u, i/ such that
it < y)
Since we start with 41, we work in the space

(NPodd = {x; € N} : x, € 2N+ 1{k — n is even}, k € [n, m|}

and 01 Tpm—n(x) =0 if m — n+ x is even.



(Simple version of) Holley inequality:

Proposition Let v be a probability on (N"),qq. Then,

pn (01, Q) < i (v, Q).



Gibbs sampler on the state space of trajectories:

Continuous time Markov chain with rates: n < k < m:

k—1 k k+1 k—1 k k+1
X * X — X x+1 X rate 1
X * X — X x—1 X rate 1 if x >1
m—1 m m-—1 m
X — X x+1 rate p
X * — X x—1 rate g if x > 1
n n+1 n n+1
qu(x+1)
* X — X—|—1 X ratem
x X — x—1 x rate prix—1)

qu(x+1)+pr(x—1)

“v boundary conditions”
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p(v, Q) is reversible for Gibbs sampler with v boundary conditions.
Substituting the left boundary condition by x, = 1:

p(91, Q) is reversible for Gibbs sampler with ¢; boundary
conditions.

Coupling ((1¢,m;) : € € N) on X" x X"

Use the same Poisson clocks to update both marginals with the
rates above:

First marginal with boundary condition ;.
Second marginal with boundary condition v.

Hence marginals are Gibbs sampler for u = (41, Q) and
1 = u(v, Q), respectively.

The coupling is monotone: 1y < ng implies 7, < 17 for all £ > 0.
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Proof of Holley inequality
Define 1 = (121...121) minimal configuration in (N/"),qq

Start (no,m0) = (1,1).  Call fig: law of (¢, 7p).
fie(n <n') =1 for all £ >0 (monotonicity).

Process is attractive jig is stochastically non decreasing.

Each marginal converges to the respective invariant measure:

e b wy S H

fig /* fi, an invariant measure for the coupled process.

fi concentrates on n < n’. Hence pu < /.

12



Monotonicity and Yaglom limit
Proof of Theorem 1

Proof of i. Modification of proof of Holley gives
:U'(ln((slv Q) = ugnfl(éla Q) (6)
Hence, the corresponding 0-marginals are also ordered:

(51 Tn =< (51 Tn+1'

Proof of ii. Let v/ be a gsd. By Holley:
0 0 /
an((;l? Q) = :U’fn(y ) Q)

which implies 61 T, < v/ T,, = //, because v/ is gsd.
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Proof of iii. Denote v, = 51 T,, and let v/ be a gsd.
By (i) vn is an increasing sequence of measures.
By (ii), vp < ¢/, for all n > 0.

Hence there is a limit v = lim, v, < /.

To check that v is a gsd, follows from (1) that

Vn—i—l(}/) = ZV,,(X)(Q(X,}/) + Q(X7 O)Vn+1(y))

X

Hence lim,, v, must satisfy equation

v(y) =3 _ v(x)(Q(x,y) + Q(x,0)v(y))

X

characterizing a gsd.
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General Setup
S partial ordered set with minimal element 1.

Theorem 1 in general Assume that @ is the transition matrix of
a irreducible aperiodic Markov chain on S U {0} absorbed at 0
such that there is at least one qsd for @ and

Qx,")Q(»2)  QX,)Q(2Z)

Q3(x',z")
Q(Xv ) =< Q(le )

1-Q(x,0) “1-Q(x,0)’

forall z,z',x,x" € S such that z < Z/, x < x'. Then,
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The sequence of measures (61 Tp,n > 1) is monotone:

(51 T, < (51 Tn+1, for all n > 0.

ii. If v isa qgsd, then

0 Th < v, for all n > 0.
The Yaglom limit of 61 converges to a gsd denoted vpin:
lim (51 Tn = Vmin

and viin < v, for any gsd v.

(9)

(10)

(11)
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Proposition (Holley inequality) Let v, v/ be probabilities on S
and Q, Q' be transition matrices on S U {0} absorbed at 0 such
that

v()Q(,2z)  V()Q'(Z)
(a) L Q(2) < s Q) , forallz <Z, withz,z €§S;
Q(X7 )Q( ) Q’(X’,-)Q(-,Z’) / / :
(b) Q(x.2) =< Q200 2) for all x < x', z < Z', with

x,x' z,Z €8;
(c) Qx,") < Q'(x',), for all x < x', with x,x" € S.

Assume also that both p7'(v, Q) and ul(v', Q') are irreducible
probability measures on X,". Then,

pr (v, Q) < g (v, Q).
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One-dimensional examples
Random walk with delay The absorbed delayed random walk:
Parameters p,q,r >0; p<q;p+q+r=1.
Transition probabilities:
QUex—1)=q, Q(x.x)=r (delay), Q(x,x+1)=p,
Q(0,0) =1, Q(x,y)=0, otherwise, x > 1.
(12)
Drift towards 0 and absorbed at 0.
Irreducible aperiodic random walk on N U {0}.
The gsd are the same as for the p-g random walk.
Holley conditions (b,c) are satisfied if pg < r? and we get:

Theorem For the delayed random walk with pq < r? the
conclusions (i, ii, iii) of Theorem 1 hold.
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The continuous time random walk
Positive real numbers p < g

Family of random walks with delay (X)), indexed by r (large):
Qrix,x —=1)=¢q(1—r), Q(x,x)=r, Q(x,x+1)=p(1-r),

Qr(x,y) = 0, otherwise;
for x > 1; Q,(0,0) = 1. r. Rescaled process:

Y = Xa-n)

As r goes to 1, (Y{) converges to (Y;), a continuous time random
walk with rates p, g absorbed at 0, with semigroup U; given by:

Ur(x,y) i= P(Ye = y| Yo = x).
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Define the conditioned delayed evolution as before:

VQP/(l—’)](y)
1— I/Qlt/(l_r)](O)

ro.__
vil{ =

And, in the limit, the continuous conditioned evolution by:

lim v T = vT(y) = LE)/)
r—1 1-— l/Ut(O)

Theorem The continuous time random walk with rates p, q
absorbed at zero satisfies

i. The sequence (61 Teon> 1) is monotone: 63 T, < 6 7}+5 for
t,s > 0.

ii. Ifvisa qsd, then §; T < v forall t >0.
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iii. The Yaglom limit of 1 converges to v given by (2):
Iim,, (51 Tt = Vmin-

Item (iii) was proven by direct computation by Seneta [7]. Our
proof is a consequence of monotonicity:

Proof (i) Use part (i) of the delayed Theorem with r > 1/2 to get
51T[-<61'AI'[+S, for t,s >0

and use (13) to conclude.

(ii) Use the fact that the gsd for Y{ are the same as the gsd for Y:
and Theorem 1(ii) to conclude 61 Ty = lim,1 61 T{ < v.

(iii) is consequence of (i,ii) like in the proof of Theorem 1. O
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Question Can one prove Holley inequality in the continuous time
case without the discrete limit?.

One should devise a reversible attractive dynamics for which the
law of the continuous-time trajectories in finite intervals
conditioned to stay positive is reversible.

22



Brownian motion

X; is random walk with no delay and probabilities
=2—-eq=35+¢

Z; = eX,, (diffusively rescaled random walk with drift)

(Z£) converges to Brownian motion with drift (B; + at)

Holley inequality holds for (Xf, t € [0, t]) (fixed e and ).

Two possibilities:

1) show the inequalities for fixed € and show that the conditioned
trajectories of Z° converge to the conditioned trajectories of B;

2) Define a “limiting dynamics” directly on the trajectories of BM
to show Holley inequality for the conditioned trajectories.

(Under construction)
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Final remarks

e There are some two-dimensional examples.

e Is it possible to relax the condition of only one minimal state?
e Attractiveness far for absorption implies condition (7)?

e If process without conditioning is attractive, then vy, has
minimal expected absorption time.

e Attractive dynamics guarantee d; has minimal expected
absorption time?
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Open problem

(Xt, Y:) queues in series.

Xt = number of customers in queue 1 at time t

Y: =number of customers in queue 2 at time t
Customers enter queue 1 at rate p < 1

Service is exponential at rate 1 in both queues.
Customers served at queue 1 jump to queue 2.

The process is absorbed when queue 2 is empty: Y, = 0.
(minimal?) gsd: v(x,y) = Cp*yp’/?, x>0,y >0
product of geometric and negative binomial.

Problem: Prove that the Yaglom limit starting from §g 1)
converges to v.
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