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The p-q discrete time random walk on {0} ∪N absorbed at 0.

Q(x , x + 1) = p, Q(x , x − 1) = q, Q(0, 0) = 1

p < q.

Conditioned distribution:

Initial distribution ν, a probability on N.

Distribution of walk conditioned to stay in N during [0, n]:

νTn(y) :=
νQn(y)

1− νQn(0)
, y ∈ S . (1)

Def: ν is a quasi stationary distribution (qsd) if

νTn = ν, n ≥ 1.
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Absorption time of qsd is exponential:

P(τν > t) = e−R(ν)

There are infinitely many qsd ordered by absorption rate

R(ν) = qν(1) ∈ [0, q(1−
√
λ)2], λ = p/q.

The minimal qsd νmin is negative binomial (2,
√
λ):

νmin(x) =
(
1−
√
λ
)2

x
(√
λ
)x−1

, x ≥ 1. (2)

and the others are given in function of ν(1) <
(
1−
√
λ
)2

by

ν(x) =
ν(1)

c

[(λ+ 1− ν(1) + c

2

)x
−
(λ+ 1− ν(1)− c

2

)x]
(3)

where c = [(ν(1)− λ− 1)2 − 4λ]1/2. See Cavender [1], pag 585.
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The Yaglom limit of ν is
lim

n
νTn,

if the limit exists and is a probability.

Stochastic domination:

N is well ordered with minimal state 1: 1 ≤ x for all x ∈ N.

ν ≺ ν ′ if and only if νf ≤ ν ′f for all non decreasing f : N→ R

Coupling: ν ≺ ν ′ if and only if there exists coupling ν̃ on N× N
with marginals ν and ν ′ such that ν̃((x , x ′) : x ≤ x ′) = 1.
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Let δ1 measure concentrating mass on 1.

Interested in Yaglom limit starting from δ1:

lim
n
δ1T2n, lim

n
δ1T2n+1

Period 2: starting from 1, visits odd sites at even times and even
sites at odd times.

ν(·|odd) be the measure ν conditioned to odd values

ν(·|even), conditioned to even values.

If ν is qsd, then

ν(·|odd)T2n = ν(·|odd), ν(·|odd)T2n+1 = ν(·|even)

5



.

Theorem 1

i. The sequence of measures (δ1T2n, n ≥ 0) is monotone:

δ1T2n ≺ δ1T2n+2, for all n ≥ 0.

ii. If ν is a qsd, then

δ1T2n ≺ ν(·|odd), δ1T2n+1 ≺ ν(·|even)

iii. Yaglom limit selects minimal qsd:

lim
n
δ1T2n = νmin(·|odd), lim

n
δ1T2n+1 = νmin(·|even)

and νmin ≺ ν, for any qsd ν.

Background

Yaglom limit (iii) proven by Seneta, Seneta and Vere Jones, Van
Doorn and Schrijner using explicit calculations.
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Trajectory distribution

For time integers n < m, trajectories in N:

Nm
n := {xm

n = (xn, . . . , xm) : xk ∈ S , k = n, . . . ,m}

Define

µm
n (ν,Q)(xm

n ) :=
ν(xn)Q(xn, xn+1) . . .Q(xm−1, xm)

1− νQm−n(0)
(4)

Distribution of chain X m
n = (Xn, . . . ,Xm) with initial distribution

P(Xn = ·) = ν conditioned to stay in S during [n,m].

νTm−n(y) =
∑

(xn,...,xm−1)∈Xm−1
n

µm
n (ν,Q)(xn, . . . , xm−1, y). (5)

The m-th marginal of µm
n (ν,Q) has distribution νTm−n.
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Domination

Partial order on Nm
n is coordinatewise order of trajectories:

xm
n ≤ y m

n if xk ≤ yk for all k ∈ [n,m].

Order of measures on Nm
n :

µ ≺ µ′ iff there is a coupling µ̃ with marginals µ, µ′ such that

µ̃(xm
n ≤ y m

n )

Since we start with δ1, we work in the space

(Nm
n )odd = {xm

n ∈ Nm
n : xk ∈ 2N + 1{k − n is even}, k ∈ [n,m]}

and δ1Tm−n(x) = 0 if m − n + x is even.
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(Simple version of) Holley inequality:

Proposition Let ν be a probability on (Nm
n )odd. Then,

µm
n (δ1,Q) ≺ µm

n (ν,Q).

9



.

Gibbs sampler on the state space of trajectories:

Continuous time Markov chain with rates: n < k < m:

k − 1 k k + 1 k − 1 k k + 1

x ∗ x → x x + 1 x rate 1
x ∗ x → x x − 1 x rate 1 if x > 1

m − 1 m m − 1 m

x ∗ → x x + 1 rate p
x ∗ → x x − 1 rate q if x > 1

n n + 1 n n + 1

∗ x → x + 1 x rate qν(x+1)
qν(x+1)+pν(x−1)

∗ x → x − 1 x rate pν(x−1)
qν(x+1)+pν(x−1)

“ν boundary conditions”
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µ(ν,Q) is reversible for Gibbs sampler with ν boundary conditions.

Substituting the left boundary condition by xn ≡ 1:

µ(δ1,Q) is reversible for Gibbs sampler with δ1 boundary
conditions.

Coupling ((η`, η
′
`) : ` ∈ N) on Xm

n ×Xm
n

Use the same Poisson clocks to update both marginals with the
rates above:

First marginal with boundary condition δ1.

Second marginal with boundary condition ν.

Hence marginals are Gibbs sampler for µ = µ(δ1,Q) and
µ′ = µ(ν,Q), respectively.

The coupling is monotone: η0 ≤ η′0 implies η` ≤ η′` for all ` ≥ 0.
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Proof of Holley inequality

Define 1 = (121 . . . 121) minimal configuration in (Nm
n )odd

Start (η0, η
′
0) = (1, 1). Call µ̃`: law of (η`, η

′
`).

µ̃`(η ≤ η′) = 1 for all ` ≥ 0 (monotonicity).

Process is attractive µ̃` is stochastically non decreasing.

Each marginal converges to the respective invariant measure:

µ` ↗ µ, µ′` ↗ µ′

µ̃` ↗ µ̃, an invariant measure for the coupled process.

µ̃ concentrates on η ≤ η′. Hence µ ≺ µ′. �
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Monotonicity and Yaglom limit

Proof of Theorem 1

Proof of i. Modification of proof of Holley gives

µ0
−n(δ1,Q) ≺ µ0

−n−1(δ1,Q). (6)

Hence, the corresponding 0-marginals are also ordered:

δ1Tn ≺ δ1Tn+1.

Proof of ii. Let ν ′ be a qsd. By Holley:

µ0
−n(δ1,Q) ≺ µ0

−n(ν ′,Q)

which implies δ1Tn ≺ ν ′Tn = ν ′, because ν ′ is qsd.
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Proof of iii. Denote νn = δ1Tn and let ν ′ be a qsd.

By (i) νn is an increasing sequence of measures.

By (ii), νn ≺ ν ′, for all n ≥ 0.

Hence there is a limit ν = limn νn ≺ ν ′.

To check that ν is a qsd, follows from (1) that

νn+1(y) =
∑

x

νn(x)
(
Q(x , y) + Q(x , 0)νn+1(y)

)
Hence limn νn must satisfy equation

ν(y) =
∑

x

ν(x)
(
Q(x , y) + Q(x , 0)ν(y)

)
characterizing a qsd. �
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General Setup

S partial ordered set with minimal element 1.

Theorem 1 in general Assume that Q is the transition matrix of
a irreducible aperiodic Markov chain on S ∪ {0} absorbed at 0
such that there is at least one qsd for Q and

Q(x , ·)Q(·, z)

Q2(x , z)
≺ Q(x ′, ·)Q(·, z ′)

Q2(x ′, z ′)
, (7)

Q(x , ·)
1− Q(x , 0)

≺ Q(x ′, ·)
1− Q(x ′, 0)

, (8)

for all z , z ′, x , x ′ ∈ S such that z ≤ z ′, x ≤ x ′. Then,
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i. The sequence of measures (δ1Tn, n ≥ 1) is monotone:

δ1Tn ≺ δ1Tn+1, for all n ≥ 0. (9)

ii. If ν is a qsd, then

δ1Tn ≺ ν, for all n ≥ 0. (10)

iii. The Yaglom limit of δ1 converges to a qsd denoted νmin:

lim
n
δ1Tn = νmin (11)

and νmin ≺ ν, for any qsd ν.

16



.

Proposition (Holley inequality) Let ν, ν ′ be probabilities on S
and Q, Q ′ be transition matrices on S ∪ {0} absorbed at 0 such
that

(a)
ν(·)Q(·, z)

νQ(z)
≺ ν ′(·)Q ′(·, z ′)

ν ′Q ′(z ′)
, for all z ≤ z ′, with z , z ′ ∈ S;

(b)
Q(x , ·)Q(·, z)

Q2(x , z)
≺ Q ′(x ′, ·)Q(·, z ′)

Q ′2(x ′, z ′)
, for all x ≤ x ′, z ≤ z ′, with

x , x ′, z , z ′ ∈ S;

(c) Q(x , ·) ≺ Q ′(x ′, ·), for all x ≤ x ′, with x , x ′ ∈ S.

Assume also that both µm
n (ν,Q) and µm

n (ν ′,Q ′) are irreducible
probability measures on Xm

n . Then,

µm
n (ν,Q) ≺ µm

n (ν ′,Q ′).
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One-dimensional examples

Random walk with delay The absorbed delayed random walk:

Parameters p, q, r > 0; p < q; p + q + r = 1.

Transition probabilities:

Q(x , x − 1) = q, Q(x , x) = r (delay), Q(x , x + 1) = p,
Q(0, 0) = 1, Q(x , y) = 0, otherwise, x ≥ 1.

(12)
Drift towards 0 and absorbed at 0.

Irreducible aperiodic random walk on N ∪ {0}.

The qsd are the same as for the p-q random walk.

Holley conditions (b,c) are satisfied if pq ≤ r 2 and we get:

Theorem For the delayed random walk with pq ≤ r 2 the
conclusions (i, ii, iii) of Theorem 1 hold.
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The continuous time random walk

Positive real numbers p < q

Family of random walks with delay (X r
n ), indexed by r (large):

Qr (x , x − 1) = q(1− r), Qr (x , x) = r , Qr (x , x + 1) = p(1− r),

Qr (x , y) = 0, otherwise;

for x ≥ 1; Qr (0, 0) = 1. r . Rescaled process:

Y r
t := X r

[t/(1−r)]

As r goes to 1, (Y r
t ) converges to (Ŷt), a continuous time random

walk with rates p, q absorbed at 0, with semigroup Ût given by:

Ût(x , y) := P(Ŷt = y |Ŷ0 = x).
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Define the conditioned delayed evolution as before:

νT r
t :=

νQ
[t/(1−r)]
r (y)

1− νQ
[t/(1−r)]
r (0)

And, in the limit, the continuous conditioned evolution by:

lim
r→1

νT r
t := νT̂t(y) =

νÛt(y)

1− νÛt(0)
(13)

Theorem The continuous time random walk with rates p, q
absorbed at zero satisfies

i. The sequence (δ1T̂t , n ≥ 1) is monotone: δ1T̂t ≺ δ1T̂t+s for
t, s ≥ 0.

ii. If ν is a qsd, then δ1T̂t ≺ ν for all t ≥ 0.
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iii. The Yaglom limit of δ1 converges to νmin given by (2):
limn δ1T̂t = νmin.

Item (iii) was proven by direct computation by Seneta [7]. Our
proof is a consequence of monotonicity:

Proof (i) Use part (i) of the delayed Theorem with r > 1/2 to get

δ1T r
t ≺ δ1T̂ r

t+s , for t, s ≥ 0

and use (13) to conclude.

(ii) Use the fact that the qsd for Y r
t are the same as the qsd for Ŷt

and Theorem 1(ii) to conclude δ1T̂t = limr→1 δ1T r
t ≺ ν.

(iii) is consequence of (i,ii) like in the proof of Theorem 1. �
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Question Can one prove Holley inequality in the continuous time
case without the discrete limit?.

One should devise a reversible attractive dynamics for which the
law of the continuous-time trajectories in finite intervals
conditioned to stay positive is reversible.
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Brownian motion

X ε
t is random walk with no delay and probabilities

p = a
2 − ε, q = a

2 + ε

Z ε
t := εX ε

ε−2t (diffusively rescaled random walk with drift)

(Z ε
t ) converges to Brownian motion with drift (Bt + at)

Holley inequality holds for (X ε
t , t ∈ [0, t̄]) (fixed ε and t̄).

Two possibilities:

1) show the inequalities for fixed ε and show that the conditioned
trajectories of Z ε converge to the conditioned trajectories of Bt

2) Define a “limiting dynamics” directly on the trajectories of BM
to show Holley inequality for the conditioned trajectories.

(Under construction)
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Final remarks

• There are some two-dimensional examples.

• Is it possible to relax the condition of only one minimal state?

• Attractiveness far for absorption implies condition (7)?

• If process without conditioning is attractive, then νmin has
minimal expected absorption time.

• Attractive dynamics guarantee δ1 has minimal expected
absorption time?
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Open problem

(Xt ,Yt) queues in series.

Xt = number of customers in queue 1 at time t

Yt =number of customers in queue 2 at time t

Customers enter queue 1 at rate ρ < 1

Service is exponential at rate 1 in both queues.

Customers served at queue 1 jump to queue 2.

The process is absorbed when queue 2 is empty: Yy = 0.

(minimal?) qsd: ν(x , y) = Cρx yρy/2, x ≥ 0 , y > 0

product of geometric and negative binomial.

Problem: Prove that the Yaglom limit starting from δ(0,1)

converges to ν.
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