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Introduction

Mainly based on joint work with G. Last and M. Schulte
(Karlsruhe).

One of the latest instalments in a rich line of research,
focussing on probabilistic approximations via the use of
infinite-dimensional integration by parts formulae.
Landmark contributions: Peccati, Solé, Utzet and Taqqu
(2010), Reitzner and Schulte (2012), Hug, Last and
Schulte (2013), Eichelsbacher and Thäle (2013).
A parallel (and richer) theory exists on Gaussian spaces —
see the monograph by Nourdin and Peccati (2012).
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Framework

For every t Ø 1, ÷t is a Poisson measure on Rd (d Ø 1),
with intensity t ◊ Lebesgue.

We denote by Ft = Ft(÷t) a generic centered and
square-integrable functional of ÷t , write v(t) = Var Ft , and

ÂFt = v(t)≠1/2Ft , t > 0.

Assuming that v(t) Ø ‡t , as t æ Œ, we want to deduce
“optimal” bounds of the type

dKol(ÂFt , N) := sup
zœR

---P(ÂFt Æ z) ≠ P(N Æ z)
--- Æ C t≠1/2,

where N ≥ N (0, 1).
In a non-dynamic setting, we shall write ÷ = ÷1, F = F1, ...
and so on.
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Chaos

Recall that every F œ L2(‡(÷)) admits a unique chaotic
decomposition of the type

F = E(F ) +
ÿ

nØ1
In(fn),

where

In(fn) =
⁄

· · ·
⁄

fn(x1, ..., xn)1{no diagonals}÷̂(dx1) · · · ÷̂(dxn)

stands for a multiple Wiener -Itô integral with respect to
the compensation ÷̂ = ÷ ≠ Leb.

This decomposition will play an important role, mostly in
the background. See Günter’s talk and my mini course for
more details.
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Type of geometric variables

One has two kind of variables: the techniques may differ very
much when passing from one class to the other.

(1) Random variables having a finite chaotic expansion. By
virtue of a result by Reitzner and Schulte (2012), these
variables are basically finite linear combinations of
U-statistics; examples include subgraph counting or total
length statistics in the Gilbert graph.

(2) Random variables having an infinite expansion.
Examples include subgraph counting and total length
statistics in the k -nearest neighbour graph, intrinsic
volumes of Poisson-Voronoi tessellations and Boolean
models (see Günter’s talk).

In this talk, we are interested in random variables of the type (2)
for which the chaotic decomposition is not easily to amenable
to analysis. Our idea for dealing with this situation is to suitably
extend the concept of a second-order Poincaré inequality.
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Gaussian framework

Recall the usual Poincaré-Chernoff-Nash inequality: for
a d-dimensional standard Gaussian vector X = (X1, ..., Xd)
and for every smooth mapping f : Rd æ R,

Var f (X ) Æ E[ÎÒf (X )Î2
Rd ].

The first example of a second order Poincaré estimate
appears in Chatterjee (2007): for f and X as above,

dTV (f (X ), N) Æ C E[ÎHessf (X )Î4
op]

1/4 ◊ E[ÎÒf (X )Î4
Rd ]

1/4

In Nourdin, Peccati and Reinert (2010): extension to
functionals F of a general Gaussian field X ,

dTV (F , N) Æ C E[ÎD2FÎ4
op]

1/4 ◊ E[ÎDFÎ4]1/4,

where D stands for the Malliavin derivative.
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Towards the Poisson framework

For a functional F of ÷ and x œ Rd , define
DxF (÷) = F (÷ + ”x) ≠ F (÷) (add-one cost operator). We
shall build on the following Poincaré inequality: for every
F œ L2(‡(÷)),

VarF Æ E
;⁄

Rd
(DxF )2dx

<
.

Note that we are looking for optimal rates, and that the
estimates on the Gaussian space typically yield suboptimal
results.
In the Poisson framework, it is much easier to work with
the Wasserstein distance dW ; however, the usual bound
dKol Æ 2

Ô
dW would yield suboptimal bounds.

One additional difficulty in the Poisson setting is that linear
functionals of a Poisson measure are in general very far
from being Gaussian.
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Main ingredient: The Ornstein-Uhlenbeck semigroup
in Mehler’s form

For every s Ø 0 , define ÷(s) to be a e≠s–thinning of ÷, and let
÷̂(s) be an independent Poisson measure with intensity
(1 ≠ e≠s)◊ Lebesgue. The collection of operators {Ts : s Ø 0}
given by

TsF (÷) := E
Ë
F (÷(s) + ÷̂(s)) | ÷

È

is the Ornstein-Uhlenbeck semigroup.

It is sometimes convenient to work with Pt := Tlog 1/t , t œ [0, 1],
so that P0F = E(F ) and P1F = F .
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Some remarkable relations

(Integration by parts) Consider the restriction of D to the
space

dom D :=
;

Ï : E
5⁄

Ï(x)2dx
6

< Œ
<

,

as well as its adjoint ”. Then, for Ï œ dom ”

E[”(Ï)F ] = E
⁄

Ï(x)DxF dx .

Let L be the the generator of {Ts}, then L = ≠”D.
The (pseudo)-inverse of L admits the representation

L≠1 = ≠
⁄ Œ

0
Ts ds = ≠

⁄ 1

0
Pt

dt
t

,

and
≠DL≠1F = ≠

⁄ 1

0
PtDF dt .
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Chaos representation

All these relations admit simple proofs, based on the following
alternate representations. Assume F =

q
n In(fn)

DxF =
q

n n In≠1(fn(x , ·))

PtF =
q

n tnIn(fn)
LF = ≠

q
n n In(fn)

L≠1F = ≠
q

n n≠1In(fn).
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A bound based on Stein’s method

The following bound is due to Eichelsbacher and Thäle (2013)
(building on Schulte (2012)), and is based on a subtle use of
Stein’s method (see my mini-course):

for every F œ L2(‡(÷))
with mean zero and variance 1,

dKol(F , N) Æ E
--1 ≠

⁄
(DxF )(≠DxL≠1F ) dx

--

+

Ô
2fi

8
E

⁄
(DxF )2|DxL≠1F | dx

+
1
2
E

⁄
(DxF )2|F ||DxL≠1F | dx

+ sup
t

E
⁄
(Dx1{F > t})(DxF )|DxL≠1F | dx .
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General second order Poincaré inequalities

Theorem (Last, Peccati and Schulte, 2013)

Let F œ L2(‡(÷)) be centered and such that Var F = 1. Let
N ≥ N (0, 1). then,

dKol(F , N) Æ “1 + “2 + “3 + “4 + “5 + “6,

or, in a dynamic setting,

dKol(Ft , N) Æ t ◊ (“1 + “2 + “3 + “4 + “5 + “6).
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The bounds

Here,

“1 := 4

Û⁄ #
E(Dx1F )2(Dx2F )2$1/2#

E(D2
x1,x3F )2(D2

x2,x3F )2$1/2dx1dx2dx3,

“2 :=
5 ⁄

E(D2
x1,x3

F )2(D2
x2,x3

F )2 dx1dx2dx3

61/2
,

“3 :=
⁄

E|DxF |3 dx ,

“4 :=
1
2

#
EF 4$1/4

⁄ #
E(DxF )4$3/4 dx ,

“5 :=
5 ⁄

[E(DxF )4 dx
61/2

,

“6 :=
5 ⁄

6
#
[E(Dx1F )4$1/2#

[E(D2
x1,x2

F )4$1/2
+ 3[E(D2

x1,x2
F )4 dx1dx2

61/2
,
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Wasserstein distance

One has also the simpler bound

dW (F , N) Æ “1 + “2 + “3,

where
dW (F , N) = sup

h:|hÕ|Æ1
|E[h(F )] ≠ E[h(N)]|

is the 1-Wasserstein distance.

14 / 20



Application: the nearest neighbour graph

For every t , we consider the restriction of ÷t to a compact
window H µ Rd . We build the associated k -nearest neighbour
graph as follows: two distinct points x , y in ÷t fl H are linked by
an edge if and only if x is one of the k -nearest neighbours of y ,
or y is one of the k -nearest neighbours of x .

Here is an example for k = 1 (courtesy of M. Schulte)
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Length of the nearest neighbour graph

We wish to establish an upper bound (for – œ [0, 1]) of the type

dKol

A
L–

t ≠ E(L–
t )

Var1/2 L–
t

, N
B

= dKol

A
Ft ≠ E(Ft)

Var1/2 Ft
, N

B

Æ a(t),

where
L–

t :=
ÿ

x≥y ;x ,yœ÷t flH
Îx ≠ yÎ–, Ft = t–/dL–

t

(in such a way that Var Ft Ø ‡–t , see Penrose and Yukich
(2001)).

Previous findings for – = 1:
Avram and Bertsimas (1993), a(t) = O((log t)1+3/4 t≠1/4)
Penrose and Yukich (2005), a(t) = O((log t)3d t≠1/2).
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A general Berry-Esséen bound

Let H µ Rd be a compact set.

Proposition (Last, Peccati and Schulte, 2014)

Let Ft œ L2(‡(÷t)), t Ø 1, and assume there are finite constants
p1, p2, c > 0 such that

E|DxFt |4+p1 Æ c, E|D2
x1,x2

Ft |4+p2 Æ c,

Moreover, assume that VarFt/t > v, t Ø 1, with v > 0 and that

m := sup
xœH, tØ1

t
⁄

P(D2
x ,yFt ”= 0)p2/(16+4p2) dy < Œ.

Let N be a standard Gaussian random variable. Then, there
exists a finite constant C, depending uniquely on c, p1, p2, v , m
and the measure of H, such that

dKol

3Ft ≠ E(Ft)Ô
VarFt

, N
4

Æ C t≠1/2, t Ø 1.
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Connections with stabilization theory

Our result requires to bound a quantity of the type

sup
xœH, tØ1

t
⁄

P(D2
x ,yFt ”= 0)— dy

Assume that there exist radii of stabilization {Rt(x , ÷t)},
verifying

DxFt(÷t) = DxFt

1
÷t fl Bd(x , Rt(x , ÷t))

2
.

Then, it suffices to show that

sup
x ,t

⁄
t P

1
y œ Bd(x , Rt(x , ÷t)) or

Rt(x , ÷t + ”y ) ”= Rt(x , ÷t))
— dy < Œ.

This is very close to the add-one cost stabilization by
Penrose and Yukich (2001).
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This is very close to the add-one cost stabilization by
Penrose and Yukich (2001).
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Back to NNG

This strategy works very well with the k -nng, yielding the
estimate

Proposition (Last, Peccati and Schulte, 2014)
There exists a finite constant C– such that

dKol

A
L–

t ≠ E(L–
t )

Var1/2 L–
t

, N
B

Æ C–Ô
t
.

Further applications will appear in Günter’s talk, as well as in
the mini course.
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