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Introduction

random points:
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Introduction

convex hull of random points:

extreme points = vertices
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Historical remarks

random points X1, ..., X4 in K ⊂ R2; K4 = conv[X1, ..., X4] ⊂ R2

f0(K4) = number of vertices of K4 =?

April 1864, Educational Times, J. J. Sylvester (1814 - 1897)
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Historical remarks

X1, ..., X4 random points in K ⊂ R2.

K = ∆ E f0(K4) = 11/3 (Sylvester)

K = B2 E f0(K4) = 48π2−35
12π2 (Woolhouse)

K = 2 E f0(K4) = 133
36 (Woolhouse)

Alikoski, Blaschke, Crofton, Dalla, Efron, Groemer, Herglotz, Larman,
Schneider
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Historical remarks

d ≥ 3:

K = Bd E f0(Kn) = .... (Buchta,Affentranger)

K = 23 E f0(K5) = 212023
43200 −

π2

432 (Zinani)

K = ∆3 E f0(Kn) = ... (Buchta,Reitzner)
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Inequalites

Blaschke (1917): for all compact convex K ⊂ R2

E f0(K∆
4 ) ≤ E f0(KK

4 ) ≤ E f0(KB2

4 ).

The triangle and disc are extremal when input is a four pt. set.

Dalla and Larman (1991) showed this holds for all n ≥ 4, ie.

E f0(K∆
n ) ≤ E f0(KK

n ) ≤ E f0(KB2

n ).

Proving the extremal property of the simplex in higher dimensions seems
to be difficult and is open.
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Surprising questions

(i) Is the expected vertex count monotone in input size? Do we have

E f0(KK
n ) ≤ E f0(KK

n+1)?

(ii) If K,L ⊂ Rd are convex, K ⊂ L, do we have

EVold(K
K
n ) ≤ EVold(L

L
n)?

Rademacher d ≥ 4, n = d+ 1 : ‘no’

If d = 2, 3, then ‘yes’.
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Statistics of random polytopes

Kn = conv[X1, ..., Xn] ⊂ K

f0(Kn) = number of vertices of Kn

f1(Kn) = number of edges of Kn

f`(Kn) = number of `-faces of Kn, ` ∈ {0, ..., d− 1}.

Vold(Kn) = volume of Kn.
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Expectation asymptotics

Difficult to derive explicit formula for statistics of convex hulls on finite
point sets.

Investigation has focussed on behavior as input size n→∞.

K compact convex: E f`(Kn) tends to infinity, ` ∈ {0, ..., d− 1}.

The shape of ∂K determines the order of magnitude of E f`(Kn).

Affine surface area:
∫
∂K κ(x)1/(d+1)dx.

κ(x): Gaussian curvature at x ∈ ∂K (product of principal curvatures).
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Expectation asymptotics (d = 2)

Rényi and Sulanke (1963-64), Xi i.i.d. in K, ∂K smooth (d = 2):

lim
n→∞

n−1/3E f0(Kn) = e0,d(VolK)−1/3

∫
∂K

κ(x)1/3dx
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Expectation asymptotics (d ≥ 2,VolK = 1)

· Reitzner (2005): ∂K of class C2, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

n−(d−1)/(d+1)E f`(Kn) = e`,d

∫
∂K

κ(x)1/(d+1)dx.

· K is a convex polytope, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

(log n)−(d−1)E f`(Kn) = e′`,d · number of flags of K.

(flag is a maximal chain of faces, each a sub-face of the next in the chain)

· Kn is convex hull of n i.i.d. standard normal r.v. on Rd:

lim
n→∞

(
√

log n)−(d−1)E f`(Kn) = E`,d.
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Central limit theorems

Assume K has either a C2 boundary or is a convex polytope.

If the random variable Zn is either Vold(Kn) or f`(Kn), ` ∈ {0, ..., d− 1},
then

sup
x∈R

∣∣∣∣P [Zn − EZn√
VarZn

≤ x
]
− Φ(x)

∣∣∣∣ ≤ c(K)ε(n) = o(1).

d = 2, f0(Kn),K polygon: Groeneboom (’88); Cabo+Groeneboom (’94).

d = 2, K = B2, Vol2(Kn): Hsing (’94).

General smooth sets in Rd: Reitzner (’05) and Vu (’06)

Gaussian polytopes: Bárány + Vu (’07).

Polytopes in Rd: Bárány + Reitzner (’10).
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Variance asymptotics

CLT uses dependency graphs and requires lower bounds on variances.

If the random variable Zn is either Vold(Kn) or f`(Kn), ` ∈ {0, ..., d− 1},
then what is limn→∞VarZn?

This question arose 20 years ago.

Solution had been known only when K is unit disc or polytope in R2

(Groeneboom, Cabo + Groeneboom).
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Variance asymptotics

· ∂K of class C3, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

n−(d−1)/(d+1)Varf`(Kn) = (VolK)−(d−1)/(d+1)

∫
∂K

κ(x)1/(d+1)dx·V`,d.

· Kn is Gaussian polytope, ` ∈ {0, 1, ..., d− 1}, d ≥ 2:

lim
n→∞

(2 log n)−(d−1)/2Varf`(Kn) = v`,d.

Calka, Schreiber and Y (’13), Calka and Y (’13,’14)
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Scaling limits of convex hulls

What is the scaling limit of the boundary of the convex hull?
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Scaling limits of convex hulls in unit ball

(i) x0 is extreme in X iff B(x0/2, |x0|/2) is not covered by⋃
x∈X :x 6=x0 B(x/2, |x|/2).

(ii) Scaling limit should preserve this property. Near x0, balls have locally
parabolic boundaries wrt polar coordinates; thus any reasonable scaling
should have the property that its scaling in radial direction should be
square of scaling in angular direction.
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Scaling limits of convex hulls in unit ball

Fact: Scaling limit of {Xi}ni=1 under T (n), n→∞, is rate 1 PPP on
R× R+.
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Scaling limits of convex hulls in unit ball

‘Characterizing balls’ are mapped to ‘characterizing parabolas’.

Scaling limit of extreme points = thinned rate 1 PPP.
What about scaling limit of boundary?
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Scaling limits of convex hulls in unit ball

Thm: The scaling limit of T (n)(∂Kn), n→∞, is the (Burgers’) festoon
of parabolic surfaces (green) (Calka, Schreiber, Y.)
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Scaling limits of convex hulls: scaling transform T (n)

Tu0 : tangent space to Sd−1 at u0 = (0, 0, ..., 1).

Exponential map exp : Tu0 → Sd−1 maps a vector v ∈ Tu0 to the point
u ∈ Sd−1 lying at the end of the geodesic of length |v| starting at u0 and
having direction v.

Scaling transform T (n) : Bd 7→ Rd−1 × R

T (n)(x) :=

(
n1/(d+1) exp−1(

x

|x|
), n2/(d+1)(1− |x|)

)
, x ∈ Bd \ {0}.

The previous pictures showed what happens in the limit as n→∞. For
fixed n the re-scaled picture looks like this:
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Scaling limits of convex hulls in unit ball

Kn = conv({Xi}ni=1). Then E f0(Kn) =

= E (card. extreme pts in [−n1/(d+1), n1/(d+1)]d−1 × [0, n2/(d+1)])

∼ n(d−1)/(d+1).
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Scaling limits for Gaussian polytopes

Extreme points are ‘distant Rn from origin’,

Rn :=
√

2 log n− log(2 · (2π)d · log n).
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Scaling limits for Gaussian polytopes
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Scaling limits for Gaussian polytopes

Fact: Scaling limit of {Xi}ni=1 is PPP on Rd−1 ×R with intensity ehdvdh.
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Scaling limits for Gaussian polytopes

T (n) maps ‘characterizing balls’ to ‘characterizing parabolas’.

Scaling limit of extreme points = thinned non-homogenous PPP on
Rd−1 × R.
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Scaling limits for Gaussian polytopes
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Scaling limits for Gaussian polytopes

Thm: The scaling limit of T (n)(∂Kn), n→∞, is the Burgers’ festoon of
parabolic surfaces touching points in PPP on Rd−1 × R with intensity
dP((v, h)) = ehdhdv. (Calka, Y.)
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Scaling limits for Gaussian polytopes

Thm: The graph of the derivative of support function of convex hull
converges after re-scaling to saw-tooth function f ′. (Calka, Y.)
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Scaling limits for Gaussian polytopes

Rn :=
√

2 log n− log(2 · (2π)d · log n).

Define scaling transform T (n) : Rd → Rd−1 × R

T (n)(x) :=

(
Rn exp−1 x

|x|
, R2

n(1− |x|
Rn

)

)
, x ∈ Rd \ 0.

The transform T (n) does the job shown on previous slides.

What happens for fixed n?

Joe Yukich (joint with Pierre Calka) (Lehigh University )Variance asympotics and scaling limits for Gaussian polytopes
Simons Workshop on Stochastic Geometry and Point Processes 34

/ 46



Scaling limits for Gaussian polytopes

Rn :=
√

2 log n− log(2 · (2π)d · log n).

Define scaling transform T (n) : Rd → Rd−1 × R

T (n)(x) :=

(
Rn exp−1 x

|x|
, R2

n(1− |x|
Rn

)

)
, x ∈ Rd \ 0.

The transform T (n) does the job shown on previous slides.

What happens for fixed n?

Joe Yukich (joint with Pierre Calka) (Lehigh University )Variance asympotics and scaling limits for Gaussian polytopes
Simons Workshop on Stochastic Geometry and Point Processes 34

/ 46



Scaling limits for Gaussian polytopes

Rn :=
√

2 log n− log(2 · (2π)d · log n).

Define scaling transform T (n) : Rd → Rd−1 × R

T (n)(x) :=

(
Rn exp−1 x

|x|
, R2

n(1− |x|
Rn

)

)
, x ∈ Rd \ 0.

The transform T (n) does the job shown on previous slides.

What happens for fixed n?

Joe Yukich (joint with Pierre Calka) (Lehigh University )Variance asympotics and scaling limits for Gaussian polytopes
Simons Workshop on Stochastic Geometry and Point Processes 34

/ 46



Scaling limits for Gaussian polytopes
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Variance asymptotics (Gaussian polytopes)

Kn is Gaussian polytope, ` ∈ {0, 1, ..., d}:

lim
n→∞

(2 log n)−(d−1)/2Varf`(Kn) = v`,d.

Formula for v`,d?
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Variance asymptotics (Gaussian polytopes)

P: PPP on Rd−1 × R with intensity ehdhdv

ξ(x,P) :=

{
1 if x⊕Π↑ not covered by

⋃
y∈P,y 6=x y ⊕Π↑

0 otherwise.

Fact: ξ stabilizes.
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Variance asymptotics (Gaussian polytopes)

For all w1, w2 ∈ Rd put
cξ(w1, w2) :=

E ξ(w1,P ∪ {w2})ξ(w2,P ∪ {w1})− E ξ(w1,P)E ξ(w2,P)

and

V0,d :=

∫ ∞
−∞

E ξ((0, h),P)dh

+

∫ ∞
−∞

∫
Rd−1

∫ ∞
−∞

cξ((0, h), (v, h′))eh
′
ehdh′dvdh.

Then
lim
n→∞

(2 log n)−(d−1)/2Varf0(Kn) = dκdV0,d.
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Inviscid Burgers’ equation; ut + uux = 0; initial condition
specified by η

u(t, x) = velocity

Initial conditions specified by a mean zero stationary Gaussian process η
having covariance

E η(0)η(x) = o(1/ log x), x→∞

and
E η(0)η(x) = 1− a2x

2/2! + a4x
4/4! + o(x4).
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Inviscid Burgers’ equation; ut + uux = 0; initial condition
specified by η

Let P be PPP on Rd−1 × R with intensity dP((v, h)) = e−hdvdh.
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Inviscid Burgers’ equation; ut + uux = 0; initial condition
specified by η

We ‘thin’ P using translates of y = x2/2; the resulting point set gives a
dependent thinning of dP((v, h)) = e−hdvdh.
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Inviscid Burgers’ equation; ut + uux = 0; initial condition
specified by η

At each local max we put a translate of the inverted parabola y = −x2/2.

Consider the derivative of the inverted festoon of translates....
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Inviscid Burgers’ equation; ut + uux = 0; initial condition
specified by η

Fix t. The limit velocity process u(L2t, L2x), subject to
L2
√

2 logL× η(x/L), converges as L→∞ to the sawtooth graph −f ′
(Molchanov, Surgailis, Woyczynski, ’95).
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Inviscid Burgers’ equation; ut + uux = 0; initial condition
specified by η

(i) local min of the green festoon ↔ shocks in the limit velocity process
u(L2t, L2x), L→∞; (MSW, ’95).

(ii) local max of festoon ↔ zeros of limit velocity process.

(iii) re-scaled angular increments between consecutive extreme points in
Kn behave like the spacings between zeros of the zero-viscosity solution.
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Inviscid Burgers’ equation ut + uux = 0

The correspondence between extreme points of convex hulls of gaussian
samples and zero-viscosity solutions to Burgers’ equation merits further
investigation.

Are some aspects of the convex hull geometry captured by a stochastic
PDE?
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THANK YOU
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