V. The Curved Cartan Complex

• Given an infinitesimally trivialized G-action on a category \mathcal{C}, the C^3 is a specific, Koszul dual model for the (derived) quotient cat. \mathcal{C}/G.

• The "obvious" model is the crossed product $(G/\hat{G}) \times \mathcal{C}$. The group algebra of G/\hat{G} is the chain complex with convolution product and enhances the Hom spaces of \mathcal{C}.

• The same "obvious" model can be interpreted as $H_*^* (B\mathcal{G}; \mathcal{C})$, but with the stack $B\mathcal{G}$ (needs care).

• The Koszul dual C^3 replaces $H^* G$ in the Hom by $H^* (B\mathcal{G})$. $\mathbb{Z}/2$ collapse globalizes the pattern, allowing for non-perturbative information.

• This recovers the correct gauge theory of a point on vector space (A-model with topological twist) (In particular, the Casimir twist gives a theory isomorphic to the B-model.)
Definition

Recall that if G acts on an algebra A, then $(G \times A) \text{-mod} = (A \text{-mod})^G$. For simplicity, focus on this:

- G acts differentiably on a (dg) algebra A.
- $L : g \to \mathcal{H}^1(A)$ is the Lie algebra action
- $\mathcal{H}^1(A)$ is Hochschild 1-cohoms (derivations).
- $\mathcal{H}^0(A)$ is Hochschild 0-cohoms, the trivialization of the action.

Such that:

$$(L, \mathcal{H}) : \left(\begin{array}{c} g \\ \mathcal{H}^1 \\ \mathcal{H}^0 \end{array} \right) \to \left(\begin{array}{c} \mathcal{H}
\end{array} \right)$$

is a morphism of dg \mathcal{A}'s, equivariant for G.

From this we build the following curved dga:

$$G \times (A \otimes \text{Sym} g^*)$$

$d = d_A + \xi^a \cdot \mathcal{L}_{\delta^a}$, $\mathcal{W} = \xi^a(\delta^a) \otimes \xi^a$ (caution!)

Satisfying the curved dga relation $d^2 = [\mathcal{W}, \cdot]$.

Notes: ξ^a basis of g, ξ^a dual basis, $\xi^a(\delta^a) \in C^\infty(G)$.

Caution: The placement of $\mathcal{W}(\xi)$ in the differential is predicated on its Hochschild degree being 1, as in the standard Cartan example. In general, $\mathcal{W}(\xi)$ gets distributed according to Hochschild degree, leading to a (curved) $A\infty$ algebra.
Examples I

Cantian Example: G acts on smooth X, $A = (\Omega^*(X), \partial)$
$L_a = \text{Lie derivative}, \ L(x) = \text{contraction}, \ \text{Hoch. deg.} \ x = 1$
$\partial_{\text{Cantian}}^2 = \partial^a \cdot L(x_a) = \left[\frac{\partial^a \otimes \theta_2(x_i)}{x_i} \right].$

Remark: To compute $H^*_G(X)$ we would take G-invariants.

Trivial Example: $A = C$. Get $G \times \text{Sym} \ g^*$, $W = \theta_2 \otimes \theta_2(x_i)$
Modules over it are equivalent to $(\text{Sym} \ g^*)_G = H^*(BG)\text{-mod}$
For instance, if $G = T$,

$$\text{Spec} \ (T \times \text{Sym}^* g) = \coprod \theta_{x_i} \quad \text{where} \quad W_\lambda \xrightarrow{x_i \mapsto \lambda(x_i)} \theta_{x_i}$$

so curved modules "live" on the zero-sheet.

This example leads to Shing topology of BG, a not-quite-finite 2dim TQFT.

Non-comm. Example: $A = U(g)$, G acts by Ad.
So $L(x) = [x, .] : U \to U$, $\lambda(x) = x, \ x \in U$.

Get $G \times (U(g) \otimes \text{Sym} \ g^*)$, $W = (\theta_2(x_i) - \theta_2) \otimes \theta_2^a$.

Modules over this are equivalent to G-representations;
the curvature forces a cancellation.

(Best seen in the Koszul dual model

$$G \times (\Lambda^*g \otimes A), \ \partial_A + \partial, \ n \text{ defines algebra action}$$

Lie algebra diff or differential $g \to A$
Examples II: the torus

The regular Representation: \mathcal{C}^{∞}

This is $\text{Coh}(\mathcal{T}_e)$ as a module over itself.

The action of T on the algebra $C[\mathcal{T}_e]$ is concealed in the Poincaré bundle $P \to T \times \mathcal{T}_e$, which is flat and multiplicative along T: $P_e \otimes P_s \cong P_{ts}$.

$= P|_{t \times t^v}$

[The action of $t \in T$ is $\otimes P_t$; the trivialization comes from following the connection on a path $1 \to t$.]

Fact: The crossed product algebra $T \times C[\mathcal{T}_e]$ is the algebra of functions on \mathcal{T}_e. The C^3 is $C[\mathcal{T}_v]$ with potential $W = z^a z_i^a$. Knörrer periodically identifies the curved module category $\cong \text{Vect}$.

Landau–Ginzburg models $Y \to T_e^v$, $W: Y \to C$.

The crossed product $T \times Y = \tilde{Y}$, the covering pulled back from $\mathcal{T}_e^v \to T_e^v$. The C^3 is $\tilde{Y} \times t$ with potential $W + z^a z_i^a$.

This is equivalent to $(Y_\lambda, W|_{Y_\lambda})$ where Y_λ is the (scheme-theoretic) fiber.
Casimir Curvings vs Topological Twists

Gromov-Witten Theory of X has a natural family of deformations, "topological twists," over $H^*(X)$.

Geometrically: $\mathcal{X}_g^h = \text{space of stable maps}^\text{curves}$

$ev: \mathcal{X}_g^{n+1} \to X$ last eval, $d \in H^*(X)$

Define the α-twisted invariant by using

$$
\exp \left(\int_{\mathcal{X}_g^{n+1}} ev^\ast \alpha \right) \cap [\mathcal{X}_g^n]_{\text{virtual}}
$$

in place of the virtual fundamental class in GW.

In the gauge theory of a point (A-model), these twist lead to Witten's integrals on the moduli of G bundles.

They come from classes in BG.

For instance, quad. Casimir (in H^4) \to symplectic volume.

Q: How do you twist the category of boundary states?

The CCC (of anything) allows for additional curvings, from $(\text{Sym}g^x)^G \subseteq H^*(BG)$; these are central elements.

Q: What effect do these have on the fixed point cat.?

The two questions answer each other.
The quadratic Casimir has a dramatic effect on the quotient category \(\text{Vect}_{G/C} \): it renders it semisimple.

Theorem The \(\frac{1}{2} z^2 \)-curved CCC is semisimple regular with one generator for each integral co-adjoint orbit in \(g \cong g^* \). A generator for each orbit is the respective Atiyah-Bott-Shapiro Thom class.

Remark The category is thus supported on the regular part of \(G \), when the CCC is Morita equivalent to the Weyl quotient of its max torus version.

Remark. For \(\sum_{i=1}^{n} x_i^2 \) on \(\mathbb{C}^n \), the MF category is equivalent to modules over the Clifford algebra. This Koszul equivalence is mediated by the curved complex

\[
\text{Cliff}^{\text{ev}} \xrightarrow{\Psi(x)^*} \text{Cliff}^{\text{odd}}
\]

Same for a Morse-Bott function.

Theorem. With curvature \(\tilde{Q} = \frac{1}{2} z^2 + EP \) \((\text{Pe}(\text{Sym}^2 g^*) G)\) and trace induced from the Batalin-Vilkovisky volume form on \(G \), the CCC generates Witten's topological Yang-Mills with top. twisting \(\frac{1}{2} (\text{quadratic}) + EP \).
Illustration for a torus

Recall \(\text{Spec} (\mathbb{C}^2) = \bigsimeq \mathbb{C} \),

\[W(\varepsilon) = \varepsilon^2 + \frac{1}{2} \varepsilon^2 \]

\(\Rightarrow \) Morse critical point \(\varepsilon = -\lambda \) on sheet \(\tau \)

Remark: The critical points "come from infinity":

With \(\varepsilon = \frac{1}{2} \varepsilon^2 \), we get \(\varepsilon = -\lambda / \varepsilon \). "Non-perturbative".

Lagrangian interpretation

Intercepts at \(\lambda / \varepsilon \)

The fixed-point category is Hom from \(T^*_{1^*} T^* \) in Kapustin-Rozansky theory.

Deformation of the trivial rep Vect,

Deformations of \(\text{Vect} \) as a \((\text{Coh}(T^*), \otimes)\)-module are controlled by \(\text{End}(\text{Id}) \) in \(\text{Ext} \; (\text{Coh}(T^*), \otimes), (V_1, V_2) \).

The latter is \((\Lambda T^*_{1^*} T^*)\)-modules with \(\otimes \), so the unit is \(C \) and \(\otimes = \text{Sym} T^*_{1^*} T^* \), while \(\text{Sym} \).

For general \(G \) we get similarly \((\text{Sym} g^*) \).
Deformation of the trivial rep. Vect,1

As a \((\text{Coh}(\mathcal{T}^n), \otimes)\)-module, \(\mathbb{Z}/2\) graded deforms of the 'fiber functor' Vect,1 au controlled by \(\mathbb{R}\text{End}(1L)\), the tensor unit in \(\text{Ext}^1((\text{Coh}, \text{ Vect})_n, \text{ Vect}_1)\)

The latter category is \(\Lambda^*(T_1^* T^n)\)-modules with (Hopf) tensor structure over \(C\).

The tensor unit is \(C\), so \(\Rightarrow \text{Sym}(T_1 T^n) = \text{Sym}^*\).

For a general semi-simple group one can show the answer is \((\text{Sym}g_\ast)^G\).

[The degree 2 part gives \(\mathbb{Z}\)-graded deformations.]

Re-interpretation of Extra-curved Cartan Gx

\[\text{G} \times (A \times \text{Sym}g_\ast), \text{ dec }, W = z^a \otimes z^a (s_i) + P(z) \]

computes the (derived, non-perturbative)
(twisted) co-invariant category \(A \otimes \text{Vect}_{\mathbb{R}}\).

Example For \(T \in \mathcal{T}^n, T \neq 1\), Vector \(\otimes \text{ Vect}_{\mathbb{R}}^1 = 0\), \(T/F\)

the representations are disjoint. But after Casimir twist, \(\text{Vect}_1 \otimes \text{ Vect}_{\mathbb{R}}^1 \cong \oplus \text{ Vect} \) because \(\text{Casimir} \) has a Morse critical point on each \(\mathcal{T}_n\).
Interpretation of the BFM $T^*(G/G')$

Recall the affine blow-up of T^*TV/W, also $(T^*G')^{reg}//G'$ and Spec $H^G_x(\Omega G)$ (Theorem)

$T^*_1TV/W = F$
Lagrangian support of some G-category E as object in KRW

the (nonperturbative) gauged category

Hamiltonian displacement of F

the underlying category

topologically twisted gauged category

(missing zero section)

most $E =$ exceptional fiber
Spec $H^G_x(\Omega G)$

$G/G' \subset TV/W$

We can explore the entire BFM space via Hamiltonian displacements of the fiber F; this corresponds to computing (all) topologically twisted gaugings of E.

In torus case: Linear Hamiltonians suffice and we get the spectral decomposition of E over $T^!$.

If $\text{Supp } E$ is not closed or has singularities, then some topologically twisted gaugings of E will be ill-behaved.
A lower-dimensional analogue

This is equivariant homology/cohomology of a chain complex with infinitesimally trivialized G action.

This $H^*_G(V^*)$ is a module over $H^*(BG) = (\text{Sym}g^*)^G$, so fibers naturally over $G^*/G = T/W$.

The derived fiber over 0, $C^*(BG; V^*) \otimes C^{c^*BG}$ is quasi-isomorphic to V^*, the original complex.

We can put on the Kapustin goggles and double the base to $H^*_G(G)$ to get an odd version of BFM space. This is an affine blow-up of $(\text{Sym} t^* \otimes \Lambda t)^W$

Lagrangians of $H^*_G(V^*)$ are necessarily supported on F then \otimes (set-theoretically)

\[\mathcal{E}/W = \text{Spec} H^*(BG) \]
Further directions

There is a Loop Group analogue of the story the Curved Caten complex and BFM space, which is roughly the blow-up of $(T^*T^*)/W$.

It should be a $2k$-dimensional reduction along the circle of 3D A-style gauge theory; it is definitely connected to K-theoretic GW invariants. Indeed, for a point one computes the "Verlinde" version of Witten's integration formulas.

The collection of all these theories should represent $(S^1\text{-reduced})$ 4-dimensional pure gauge theory for G. Langlands duality ought to be a salient feature here.

Finally, one can guess that k-dimensional, A-style gauge theories are "described" by k-categorifications of $H_k^G(\Sigma^k B G) = H_k^G(\Sigma^{k-1} G)$.

If $k = 1$, $H_1^G(\Sigma^0 B G) = H_1^G(G)$.

This gives at least a starting point in high dimension.