Noncommutative projective geometry.

J. T. Stafford,

University of Michigan.

Noncommutative Projective Geometry

J. T. Stafford

University of Michigan.

In recent years a surprising number of
significant insights and results in
noncommutative algebra have been obtained
by using the global techniques of projective algebraic geometry. This talk will survey some of these results.

Thus, we will be interested in using geometric techniques to study graded noncommutative rings.

Definitions:
$k=$ fixed algebraically closed base field. A connected graded (cg) k-algebra is a ring $R=k \oplus R_{1} \oplus R_{2} \oplus \cdots$ such that:
(i) $\operatorname{dim}_{k} R_{i}<\infty \forall i \geq 0$.
(ii) R is generated by R_{1} as a k-algebra.
gr- $R=$ category of all fin gen, graded right R-modules $M=\bigoplus_{i \in \mathbb{Z}} M_{i}$. qgr- $R=\operatorname{gr}-R /\{$ fin $\operatorname{dim} R$-modules $\}$.

Intuition: qgr- $R=$ "coherent sheaves" on the imaginary space $\operatorname{Proj}(R)$.

Commutative Theory. Fix throughout:
A projective variety (or scheme) X with an invertible sheaf \mathcal{L} and set $\operatorname{coh}(X)$ for the category of coherent sheaves on X.
The homogeneous coordinate ring is

$$
B(X, \mathcal{L})=k \oplus \bigoplus_{n \geq 1} \mathrm{H}^{0}\left(X, \mathcal{L}^{\otimes n}\right)
$$

Example: $X=\mathbb{P}^{1}$, with $k\left(\mathbb{P}^{1}\right)=k(u)$. Set
$\mathbb{A}=\mathbb{P}^{1} \backslash\{\infty\}$ and $\mathbb{A}^{\prime}=\mathbb{P}^{1} \backslash\{0\} ;$ thus
$\mathcal{O}(\mathbb{A})=k[u]$ and $\mathcal{O}\left(\mathbb{A}^{\prime}\right)=k\left[u^{-1}\right]$.
Let $\mathcal{L}=\mathcal{O}(1)$ to be the sheaf generated by $x=1$ and $y=u$; thus $\mathcal{L}(\mathbb{A})=k[u]$ but
$\mathcal{L}\left(\mathbb{A}^{\prime}\right)=u k\left[u^{-1}\right]$. Then \mathcal{L} has global sections
$\mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{L}\right)=k[u] \cap u k\left[u^{-1}\right]=k+k u=k x+k y$.

Then $\mathcal{L}^{\otimes 2}=\mathcal{O}(2)$ is defined by
$\mathcal{L}^{\otimes 2}(\mathbb{A})=k[u]$ but $\mathcal{L}^{\otimes 2}\left(\mathbb{A}^{\prime}\right)=u^{2} k\left[u^{-1}\right]$
$\mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{L}^{\otimes 2}\right)$ has basis
$1=x^{2}, u=x y, u^{2}=y^{2}$.
Similarly $\mathrm{H}^{0}\left(\mathbb{P}^{1}, \mathcal{L}^{\otimes n}\right)$ has basis x^{n}, \ldots, y^{n} and so $B\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)=k[x, y]$.

Think of $\mathbb{P}^{1} \leadsto B\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$ as the converse to $k[x, y] \leadsto \operatorname{Proj}(k[x, y])=\left\{\left(\lambda_{0} x+\lambda_{1} y\right)\right\}=\mathbb{P}^{1}$.

Serre's Theorem. Assume \mathcal{L} is ample; ie, \forall $\mathcal{F} \in \operatorname{coh}(X), \mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is generated by $\mathrm{H}^{0}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n}\right)$ for $n \gg 0$. Then:
(1) $B=B(X, \mathcal{L})$ is a fg noetherian k-algebra.
(2) $\operatorname{qgr}-B \sim \operatorname{coh}(X)$ and $X=\operatorname{Proj}(B)$.

Noncommutative analogues.

Definitions: Let $\sigma \in \operatorname{Aut}(X)$. Set
$\mathcal{L}^{\sigma}=\sigma^{*} \mathcal{L}$ and $\mathcal{L}_{n}=\mathcal{L} \otimes \mathcal{L}^{\sigma} \otimes \cdots \otimes \mathcal{L}^{\sigma^{n-1}}$.
The twisted homogeneous coordinate ring is $B=B(X, \mathcal{L}, \sigma)=k \oplus \bigoplus_{i=1}^{\infty} \mathrm{H}^{0}\left(X, \mathcal{L}_{n}\right)$.
If $B_{n}=\mathrm{H}^{0}\left(X, \mathcal{L}_{n}\right)$ then B has a natural multiplication:

$$
\begin{aligned}
B_{n} \otimes B_{m} & \xrightarrow{\sim} \mathrm{H}^{0}\left(X, \mathcal{L}_{n}\right) \otimes \mathrm{H}^{0}\left(X, \mathcal{L}_{m}^{\sigma^{n}}\right) \\
& \xrightarrow{\phi} \mathrm{H}^{0}\left(X, \mathcal{L}_{n+m}\right)=B_{n+m}
\end{aligned}
$$

For ϕ, take global sections $\mathrm{H}^{0}(X, \ldots)$ of

$$
\mathcal{L}_{n} \otimes \mathcal{L}_{m}^{\sigma^{n}} \xrightarrow{\sim} \mathcal{L}_{n+m} .
$$

Example (cont): $X=\mathbb{P}^{1}, \mathcal{L}=\mathcal{O}(1)$ and $\sigma\left(\lambda_{0}: \lambda_{1}\right)=\left(\lambda_{0}: q \lambda_{1}\right)$, for $q \in k^{*}$. Then:
$B(X, \mathcal{O}(1), \sigma) \cong k\{x, y\} /(x y-q y x)$
is the "quantum affine plane" (or "quantum" \mathbb{P}^{1}).

Proof: In $k\left(\mathbb{P}^{1}\right)=k(u), \sigma(u)=q u$. Recall
$\mathcal{L}=\mathcal{O}(1)$ is generated by $x=1$ and $y=u$.
Thus $\mathcal{L}^{\sigma}=\mathcal{L}$ and so $\mathcal{L}_{n}=\mathcal{L}^{\otimes n}=\mathcal{O}(n)$.

Thus, as vector spaces:
$B(X, \mathcal{O}(1), \sigma) \cong B(X, \mathcal{O}(1), 1) \cong k[x, y]$.
But
$x y=\operatorname{Im}\left(x \otimes y \rightarrow x \otimes y^{\sigma}=1 \otimes(q u)\right)=q u$
yet
$y x=\operatorname{Im}\left(y \otimes x \rightarrow y \otimes x^{\sigma}=u \otimes 1\right)=u$.
So $x y=q y x$.

There is an analogue of Serre's Theorem.
Theorem (Artin-Van den Bergh).
Assume \mathcal{L} is σ-ample; ie,
$\forall \mathcal{F} \in \operatorname{coh}(X), \mathcal{F} \otimes \mathcal{L}_{n}$ is generated by its
sections for $n \gg 0$. Then:
(1) $B=B(X, \mathcal{L}, \sigma)$ is a finitely generated

Noetherian k-algebra.
(2) $\operatorname{qgr}-B \sim \operatorname{coh}(X)$.

Remark: If X is an irred curve or if $X=\mathbb{P}^{n}$ then

$$
\sigma-\text { ample } \Leftrightarrow \text { ample. }
$$

For more general X it is a more subtle, but still understood concept (Keeler).

Appl. 1; Noncommutative Curves:

Theorem (Artin-S) Let R be a cg domain such that $\operatorname{dim}_{k} R_{n}$ grows linearly. Then:
(1) $R=B(X, \mathcal{L}, \sigma)$, for an irred curve X,
$\sigma \in \operatorname{Aut}(X)$ and invertible sheaf \mathcal{L},
up to a fin dim vector space.
(2) R is noetherian with $\operatorname{qgr}-R \sim \operatorname{coh}(X)$.

Thus "NC curves are commutative."

Converse: (Reiten-Van den Bergh) If \mathcal{C} is a Grothendieck category satisfying the basic properties of $\operatorname{coh}(X)$ for a smooth irred curve X, then $\mathcal{C} \sim$ qgr- R for some cg ring R such that $\operatorname{dim}_{k} R_{n}$ grows linearly.

Consequences: (1) Up to a change of variable the only auts of $k\left(\mathbb{P}^{1}\right)$ are $u \mapsto q u$ and $u \mapsto u+1$. Thus the only quantum \mathbb{P}^{1} 's are $x y=q y x$ and $x y=y x+y^{2}$.
(2) If $|\sigma|<\infty$ then R is a finite module over its centre.

If $|\sigma|=\infty$ then X is rational or elliptic and R has at most 2 proper homogeneous prime ideals.

Remarks: Set
$\operatorname{GKdim}(R)=\lim \inf \left\{\alpha: \operatorname{dim}\left(\sum_{i=0}^{n} R_{i}\right) \leq n^{\alpha}\right\}$
The last theorem works for $G K \operatorname{dim}(R)=2$.
If R is a cg domain with $\operatorname{GKdim}(R)=1$, then $R=k[x]$ (up to a fin dim vector space).
There are no cg domains R with $1<\operatorname{Gkdim}(R)<2$ (Bergman) or
$2<\operatorname{Gkdim}(R)<3$ (Smoktunovicz), so the next case is:

Appl. 2 : Noncommutative \mathbb{P}^{2} 's.

In the 80 's Artin \& Schelter were trying to classify noncom analogues of $k[x, y, z]$
(Artin-Schelter regular rings). There was one example they could not analyse.

Example: (The Sklyanin Algebra) Let $(a: b: c) \in \mathbb{P}^{2} \backslash K$ for a (known) set K.
Then $S=S(a, b, c)=$
$\frac{k\left\{x_{0}, x_{1}, x_{2}\right\}}{\left(a x_{i} x_{i+1}-b x_{i+1} x_{i}-c x_{i+2}^{2}: i \in \mathbb{Z} /(3)\right)}$.

Artin, Tate and Van den Bergh where eventually able to understand S "geometrically" by showing that S mapped onto some $B(E, \mathcal{L}, \sigma)$ (where E is an elliptic curve). This then controlled the structure of S and enabled them to understand its properties.

So why do twisted homogeneous coordinate rings keep turning up?

Definition: A point module is a cyclic graded R-module $M=M_{0} \oplus M_{1} \oplus \cdots$ with $\operatorname{dim} M_{i}=1 \forall i \geq 0$.

If R is a commutative cg domain, then:
$\{$ Point modules for $R\}=$
$\{$ graded factor rings $R / P \cong k[x]$ of $R\}$
\leftrightarrow points in $X=\operatorname{Proj}(R)$

Point Modules for $S=S(a, b, c)$.
If M is a point module, write $M_{i}=m_{i} k$ and $m_{i} x_{j}=\lambda_{i j} m_{i+1}$ for some $\lambda_{i j} \in k$.
If $f=f\left(x_{i} x_{j}\right) \in S_{1} \times S_{1}$ is a quadratic reln for S, then $0=m_{0} f=f\left(\lambda_{0 i} \lambda_{1 j}\right) m_{2}$.

So $f\left(\lambda_{0 i} \lambda_{1 j}\right)=0$. This defines
$\Lambda \subseteq \mathbb{P}\left(S_{1}^{*}\right) \times \mathbb{P}\left(S_{1}^{*}\right)$ and Λ parametrizes truncated point modules of length 3:
$M=M_{0} \oplus M_{1} \oplus M_{2}$
(with M cyclic and $\operatorname{dim}_{k} M_{i}=1$).

Steps of ATV's Proof:
(1) Λ is the graph of an aut σ of an elliptic
curve $E \stackrel{\iota}{\subseteq} \mathbb{P}^{2}=\mathbb{P}\left(S_{1}^{*}\right)$.
(2) E param all point modules over S.
(3) σ is the shift functor on point modules:
$M \mapsto M[1]_{\geq 0}=M_{1} \oplus M_{2} \oplus \cdots$
(4) By the construction there is a ring hom $\pi: S \rightarrow B=B(E, \mathcal{L}, \sigma)$.

Theorem (Artin-Tate-Van den Bergh)
(i) π is surjective and $B \cong S / g S \quad\left(g \in S_{3}\right)$.
(ii) S is AS-regular of $\operatorname{dim} 3$; that is:
(a) $\operatorname{gldim} S=3$.
(b) S has polynomially bounded growth.
(c) $\operatorname{Ext}^{i}(k, S)= \begin{cases}0, & \text { if } i \neq 3 ; \\ k, & \text { if } i=3 .\end{cases}$

Theorem (ATV), cont.
(iii) Conversely, if R is $A S$ regular of $\operatorname{dim} 3$ then R is a noetherian domain and either:
(a) $R=B(X, \mathcal{L}, \sigma)$ with $X=\mathbb{P}^{2}$
(b) $R=B(X, \mathcal{L}, \sigma)$ with $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or
(c) $R \rightarrow B(E, \mathcal{L}, \sigma)$ for E a curve. In this case R is determined by $\{E, \mathcal{L}, \sigma\}$.

Remarks: (i) If R is AS-regular of dimension 3 and Hilbert series $1 /(1-t)^{3}$ we call R-or gr- R-a noncommutative \mathbb{P}^{2}.
(ii) This holds for $S=S(a, b, c)$. Think of gr- $S(a, b, c)$ as a NC \mathbb{P}^{2} with an embedded elliptic curve E.
(iii) (Bondal and Polishchuk) These are the "only " NC \mathbb{P}^{2} 's.

Program to classify all NC surfaces ($\equiv \mathbf{c g}$ domains R with $G K \operatorname{dim} R=3$.):

1) Classify up to birational equivalence (\equiv classify their graded division rings).

Conj (Artin): These are known.
2) Classify the minimal models.

In the rational case these are $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{1} bundles over \mathbb{P}^{1}. Their NC analogues have been classified by Bondal-Polishchuk \& Van den Bergh.
3) Prove that all NC surfaces can be obtained from minimal models via blowing up and down.

This is wide open, although Van den Bergh has an analogue of blowing up and down.
(You will need extra cnds on R, since this is really a program for "smooth surfaces.")

Application 3. Weyl algebras and

 Calogero-Moser Space. The Weyl algebra $A_{1}(\mathbb{C})=\left\{\sum f_{i}(x) \delta^{i}\right\}$ for $f_{i}(x) \in \mathbb{C}[x], \delta_{i}=\frac{d}{d x}$.
Theorem (Cannings-Holland,

Berest-Wilson) Isomorphism classes of right ideals of A_{1} correspond to Wilson's adelic Grassmannian $G R^{\text {ad }}=\prod_{n>0} \mathcal{C}_{n}$, where \mathcal{C}_{n} is a completed Calogero Moser space:
$\mathcal{C}_{n}=\left\{X, Y \in M_{n}(\mathbb{C}): r k\left([X, Y]-I_{n}\right) \leq 1\right\}$.

Projective approach: (after Le Bruyn, BW, Baranovsky-Ginzburg-Kuznetsov..)
Form the homogenised Weyl algebra H, generated by x, y, z where z is central and $y x-x y=z^{2}$. This is a NC \mathbb{P}^{2}, with factor $B=H /(z)=B(\mathbb{P}, \mathcal{O}(1), I d)$. The problem becomes to classify reflexive right ideals I of H with $I / z I \cong B$, or, equivalently, their images in qgr- H : the "locally free sheaves" \mathcal{L} that are trivial at infinity: $\mathcal{L} / z \mathcal{L} \cong \mathcal{O}_{\mathbb{P}^{1}}$.

A torsion-free (tf), rank 1 module $\mathcal{L} \in$ qgr- H (that is, the image of a right ideal of H) has invariants: the first Chern class c_{1} (a unique shift $\mathcal{L}[n]$ has $c_{1}=0$) and the Euler char $\chi(\mathcal{L})=\sum(-1)^{j} \operatorname{dim}_{k} \operatorname{Ext}_{q g r-H}^{j}(H, \mathcal{L})$.

Theorem: (1) For all $n \geq 0$ there is a fine moduli space $\mathcal{M}=\mathcal{M}_{H}^{s s}(1,0,1-n)$ for equivalence classes of rank one tf modules \mathcal{L} in qgr- H with $c_{1}=0$ and $\chi=1-n$.
(2) \mathcal{M} is a (smooth irreducible projective) deformation of the Hilbert scheme $\left(\mathbb{P}^{2}\right)^{[n]}$ of n points in \mathbb{P}^{2}.
(3) $\mathcal{M} \supset \mathcal{C}_{n}$, which is a deformation of $\left(\mathbb{A}^{2}\right)^{[n]}$, and parametrizes equivalence classes of locally free sheaves in qgr- H with $\chi=1-n$ and trivial at infinity.

Analogues hold for all NC $\mathbb{P}^{2} \mathrm{~S}$ (Nevins-S and De Naeghel-Van den Bergh).

