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In recent years a surprising number of

significant insights and results in

noncommutative algebra have been obtained

by using the global techniques of projective

algebraic geometry. This talk will survey

some of these results.

Thus, we will be interested in using geometric

techniques to study graded noncommutative

rings.



Definitions:
k = fixed algebraically closed base field. A
connected graded (cg) k-algebra is a ring
R = k ⊕R1 ⊕R2 ⊕ · · · such that:

(i) dimk Ri < ∞ ∀ i ≥ 0.

(ii) R is generated by R1 as a k-algebra.

gr-R = category of all fin gen, graded
right R-modules M =

⊕
i∈Z Mi.

qgr-R = gr-R/{fin dim R-modules}.

Intuition: qgr-R = “coherent sheaves” on
the imaginary space Proj(R).

Commutative Theory. Fix throughout:

A projective variety (or scheme) X with an
invertible sheaf L and set coh(X) for the
category of coherent sheaves on X.

The homogeneous coordinate ring is

B(X,L) = k ⊕
⊕
n≥1

H0(X, L⊗n)



Example: X = P1, with k(P1) = k(u). Set
A = P1 r {∞} and A′ = P1 r {0}; thus
O(A) = k[u] and O(A′) = k[u−1].

Let L = O(1) to be the sheaf generated by
x = 1 and y = u; thus L(A) = k[u] but
L(A′) = uk[u−1]. Then L has global sections
H0(P1, L) = k[u]∩uk[u−1] = k+ku = kx+ky.

Then L⊗2 = O(2) is defined by
L⊗2(A) = k[u] but L⊗2(A′) = u2k[u−1]

H0(P1, L⊗2) has basis
1 = x2, u = xy, u2 = y2.

Similarly H0(P1, L⊗n) has basis xn, . . . , yn

and so B(P1,O(1)) = k[x, y].

Think of P1 ; B(P1,O(1)) as the converse to
k[x, y] ; Proj(k[x, y]) = {(λ0x + λ1y)} = P1.



Serre’s Theorem. Assume L is ample; ie, ∀
F ∈ coh(X), F ⊗ L⊗n is generated by
H0(X,F ⊗ L⊗n) for n � 0. Then:

(1) B = B(X,L) is a fg noetherian k-algebra.

(2) qgr-B ∼ coh(X) and X =Proj(B).

Noncommutative analogues.

Definitions: Let σ ∈ Aut(X). Set

Lσ = σ∗L and Ln = L ⊗ Lσ ⊗ · · · ⊗ Lσn−1
.

The twisted homogeneous coordinate ring is

B = B(X,L, σ) = k ⊕
⊕∞

i=1 H0(X,Ln).

If Bn = H0(X,Ln) then B has a natural
multiplication:

Bn ⊗Bm
∼−→ H0(X,Ln)⊗H0(X,Lσn

m )
φ−→ H0(X,Ln+m) = Bn+m

For φ, take global sections H0(X, ) of

Ln ⊗ Lσn

m
∼−→ Ln+m.



Example (cont): X = P1, L = O(1) and
σ(λ0 : λ1) = (λ0 : qλ1), for q ∈ k∗. Then:

B(X,O(1), σ) ∼= k{x, y}/(xy − qyx)
is the “quantum affine plane” (or “quantum”
P1).

Proof: In k(P1) = k(u), σ(u) = qu. Recall
L = O(1) is generated by x = 1 and y = u.
Thus Lσ = L and so Ln = L⊗n = O(n).

Thus, as vector spaces:

B(X,O(1), σ) ∼= B(X,O(1), 1) ∼= k[x, y].

But
xy = Im

(
x⊗ y → x⊗ yσ = 1⊗ (qu)

)
= qu

yet
yx = Im

(
y ⊗ x → y ⊗ xσ = u⊗ 1

)
= u.

So xy = qyx.



There is an analogue of Serre’s Theorem.

Theorem (Artin-Van den Bergh).

Assume L is σ-ample; ie,

∀ F ∈ coh(X), F ⊗ Ln is generated by its

sections for n � 0. Then:

(1) B = B(X,L, σ) is a finitely generated

Noetherian k-algebra.

(2) qgr-B ∼ coh(X).

Remark: If X is an irred curve or if X = Pn

then

σ − ample ⇔ ample.

For more general X it is a more subtle, but

still understood concept (Keeler).



Appl. 1; Noncommutative Curves:

Theorem (Artin-S) Let R be a cg domain
such that dimk Rn grows linearly. Then:

(1) R = B(X,L, σ), for an irred curve X,
σ ∈ Aut(X) and invertible sheaf L,
up to a fin dim vector space.

(2) R is noetherian with qgr-R ∼ coh(X).

Thus “NC curves are commutative.”

Converse: ( Reiten-Van den Bergh) If C
is a Grothendieck category satisfying the
basic properties of coh(X) for a smooth irred
curve X, then C ∼ qgr-R for some cg ring R

such that dimk Rn grows linearly.



Consequences: (1) Up to a change of
variable the only auts of k(P1) are u 7→ qu

and u 7→ u + 1. Thus the only quantum P1’s
are xy = qyx and xy = yx + y2.

(2) If |σ| < ∞ then R is a finite module over
its centre.

If |σ| = ∞ then X is rational or elliptic and
R has at most 2 proper homogeneous prime
ideals.

Remarks: Set

GKdim(R) = lim inf{α : dim(
n∑

i=0

Ri) ≤ nα}

The last theorem works for GKdim(R) = 2.
If R is a cg domain with GKdim(R) = 1,
then R = k[x] (up to a fin dim vector space).

There are no cg domains R with
1 < Gkdim(R) < 2 (Bergman) or
2 < Gkdim(R) < 3 (Smoktunovicz), so the
next case is:



Appl. 2 : Noncommutative P2’s.

In the 80’s Artin & Schelter were trying to
classify noncom analogues of k[x, y, z]
(Artin-Schelter regular rings). There was one
example they could not analyse.

Example: (The Sklyanin Algebra) Let
(a : b : c) ∈ P2 r K for a (known) set K.
Then S = S(a, b, c) =

k{x0, x1, x2}(
axixi+1 − bxi+1xi − cx2

i+2 : i ∈ Z/(3)
) .

Artin, Tate and Van den Bergh where
eventually able to understand S
“geometrically” by showing that S mapped
onto some B(E,L, σ) (where E is an elliptic
curve). This then controlled the structure of
S and enabled them to understand its
properties.

So why do twisted homogeneous coordinate
rings keep turning up?



Definition: A point module is a cyclic
graded R-module M = M0 ⊕M1 ⊕ · · · with
dim Mi = 1 ∀ i ≥ 0.

If R is a commutative cg domain, then:

{Point modules for R } =

{graded factor rings R/P ∼= k[x] of R}

↔ points in X = Proj(R).

Point Modules for S = S(a, b, c).

If M is a point module, write Mi = mik and
mixj = λijmi+1 for some λij ∈ k.

If f = f(xixj) ∈ S1 × S1 is a quadratic reln
for S, then 0 = m0f = f(λ0iλ1j)m2.

So f(λ0iλ1j) = 0. This defines
Λ ⊆ P(S∗1)× P(S∗1) and Λ parametrizes
truncated point modules of length 3:
M = M0 ⊕M1 ⊕M2

(with M cyclic and dimk Mi = 1).



Steps of ATV’s Proof:

(1) Λ is the graph of an aut σ of an elliptic

curve E
ι
⊆ P2 = P(S∗1).

(2) E param all point modules over S.

(3) σ is the shift functor on point modules:
M 7→ M [1]≥0 = M1 ⊕M2 ⊕ · · ·

(4) By the construction there is a ring hom
π : S → B = B(E,L, σ).

Theorem (Artin-Tate-Van den Bergh)

(i) π is surjective and B ∼= S/gS (g ∈ S3).

(ii) S is AS-regular of dim 3; that is:

(a) gldim S = 3.

(b) S has polynomially bounded growth.

(c) Exti(k, S) =
{

0, if i 6= 3;
k, if i = 3.



Theorem (ATV), cont.

(iii) Conversely, if R is AS regular of dim 3

then R is a noetherian domain and either:

(a) R = B(X,L, σ) with X = P2

(b) R = B(X,L, σ) with X = P1 × P1 or

(c) R � B(E,L, σ) for E a curve. In this

case R is determined by {E,L, σ}.

Remarks: (i) If R is AS-regular of

dimension 3 and Hilbert series 1/(1− t)3 we

call R—or qgr-R—a noncommutative P2.

(ii) This holds for S = S(a, b, c). Think of

qgr-S(a, b, c) as a NC P2 with an embedded

elliptic curve E.

(iii) (Bondal and Polishchuk) These are

the “only ” NC P2’s.



Program to classify all NC surfaces
(≡ cg domains R with GKdimR = 3.):

1) Classify up to birational equivalence
(≡ classify their graded division rings).

Conj (Artin): These are known.

2) Classify the minimal models.

In the rational case these are P2, P1 × P1 and
P1 bundles over P1. Their NC analogues have
been classified by Bondal-Polishchuk &
Van den Bergh.

3) Prove that all NC surfaces can be obtained
from minimal models via blowing up and
down.

This is wide open, although Van den Bergh
has an analogue of blowing up and down.

(You will need extra cnds on R, since this is
really a program for “smooth surfaces.”)



Application 3. Weyl algebras and
Calogero-Moser Space. The Weyl algebra
A1(C) = {

∑
fi(x)δi} for fi(x) ∈ C[x], δi = d

dx .

Theorem (Cannings-Holland,
Berest-Wilson) Isomorphism classes of
right ideals of A1 correspond to Wilson’s
adelic Grassmannian GRad =

∏
n>0 Cn, where

Cn is a completed Calogero Moser space:
Cn = {X, Y ∈ Mn(C) : rk([X, Y ]− In) ≤ 1}.

Projective approach: (after Le Bruyn,
BW, Baranovsky-Ginzburg-Kuznetsov..)
Form the homogenised Weyl algebra H,
generated by x, y, z where z is central and
yx− xy = z2. This is a NC P2, with factor
B = H/(z) = B(P,O(1), Id). The problem
becomes to classify reflexive right ideals I of
H with I/zI ∼= B, or, equivalently, their
images in qgr-H: the “locally free sheaves” L
that are trivial at infinity: L/zL ∼= OP1 .



A torsion-free (tf), rank 1 module L ∈ qgr-H
(that is, the image of a right ideal of H) has
invariants: the first Chern class c1 (a unique
shift L[n] has c1 = 0) and the Euler char
χ(L) =

∑
(−1)j dimk Extj

qgr−H(H,L).

Theorem: (1) For all n ≥ 0 there is a fine
moduli space M = Mss

H (1, 0, 1− n) for
equivalence classes of rank one tf modules L
in qgr-H with c1 = 0 and χ = 1− n.

(2) M is a (smooth irreducible projective)
deformation of the Hilbert scheme (P2)[n] of n

points in P2.

(3) M⊃ Cn, which is a deformation of
(A2)[n], and parametrizes equivalence classes
of locally free sheaves in qgr-H with
χ = 1− n and trivial at infinity.

Analogues hold for all NC P2s (Nevins-S
and De Naeghel-Van den Bergh).


