Representation theory and a strange duality for symplectic varieties

Ben Webster
(joint with Tom Braden, Tony Licata, and Nick Proudfoot)
MIT/Oregon

February 11, 2010

Outline

1 Hyperplanes arrangements and a mysterious algebra
■ Definitions

- A surprising amount of structure

2 Symplectic cones
■ Definitions

- Examples

■ Deformation quantizations
3 Duality

- Geometry
- Cells and strata
- Localization duality

4 Quiver varieties and affine Grassmannians
■ Quiver varities

- Affine Grassmannians

■ Knot homology

References:

This slide show can be downloaded from

http://math.mit.edu/~bwebster/austin-dual.pdf

Hyperplane arrangements

Let's start with a little notation.

Hyperplane arrangements

Let's start with a little notation.
A polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ is
1 A subspace $V \subset \mathbb{R}^{n}$.

Hyperplane arrangements

Let's start with a little notation.
A polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ is
1 A subspace $V \subset \mathbb{R}^{n}$.
2 An element $\xi \in \mathbb{R}^{n} / V$ (a coset $\left.V+\xi \subset \mathbb{R}^{n}\right)$.

Hyperplane arrangements

Let's start with a little notation.
A polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ is
1 A subspace $V \subset \mathbb{R}^{n}$.
2 An element $\xi \in \mathbb{R}^{n} / V$ (a coset $\left.V+\xi \subset \mathbb{R}^{n}\right)$.
3 An element $\nu \in V^{*}$ (a direction in V).

Hyperplane arrangements

Let's start with a little notation.
A polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ is
1 A subspace $V \subset \mathbb{R}^{n}$.
2 An element $\xi \in \mathbb{R}^{n} / V$ (a coset $\left.V+\xi \subset \mathbb{R}^{n}\right)$.
3 An element $\nu \in V^{*}$ (a direction in V).

Hyperplane arrangements

Let's start with a little notation.
A polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ is
1 A subspace $V \subset \mathbb{R}^{n}$.
2 An element $\xi \in \mathbb{R}^{n} / V$ (a coset $\left.V+\xi \subset \mathbb{R}^{n}\right)$.
3 An element $\nu \in V^{*}$ (a direction in V).

We'll always assume that this choice is generic.

Hyperplane arrangements

Let's start with a little notation.
A polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ is
1 A subspace $V \subset \mathbb{R}^{n}$.
2 An element $\xi \in \mathbb{R}^{n} / V$ (a coset $\left.V+\xi \subset \mathbb{R}^{n}\right)$.
3 An element $\nu \in V^{*}$ (a direction in V).

We'll always assume that this choice is generic.

This picture above is of $V+\xi$. The hyperplanes in the arrangement are the vanishing sets of $\left.t_{i}\right|_{V+\xi}$ (where the t_{i} are the coordinates on \mathbb{R}^{n}).

The chambers of \mathcal{V} are the connected components of $(V+\xi) \cap\left(\mathbb{R}^{\times}\right)^{n}$.
We call a chamber bounded if ν achieves a maximum on it. We let \mathcal{B} denote the set of bounded chambers.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
$■$ idempotents e_{A} for all chambers A.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V. with the relations

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V. with the relations
- $c_{A B} e_{B^{\prime}}=c_{A B} \delta_{B}^{B^{\prime}}$ and $e_{A^{\prime}} c_{A B}=c_{A B} \delta_{A}^{A^{\prime}}$.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V. with the relations
- $c_{A B} e_{B^{\prime}}=c_{A B} \delta_{B}^{B^{\prime}}$ and $e_{A^{\prime}} c_{A B}=c_{A B} \delta_{A}^{A^{\prime}}$.
$\square c_{A B} c_{B D}=c_{A B^{\prime}} c_{B^{\prime} D}$.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V. with the relations
- $c_{A B} e_{B^{\prime}}=c_{A B} \delta_{B}^{B^{\prime}}$ and
- $e_{A}=0$ if A is not bounded. $e_{A^{\prime}} c_{A B}=c_{A B} \delta_{A}^{A^{\prime}}$.
$\square c_{A B} c_{B D}=c_{A B^{\prime}} c_{B^{\prime} D}$.

A mysterious algebra

From such an arrangement, one can build an algebra $A(\mathcal{V})$ over $\operatorname{Sym}^{\bullet}\left(V^{*}\right)$, generated by elements

- $c_{A B}$ for all chambers A, B which are adjacent across a single hyperplane.
\square idempotents e_{A} for all chambers A.
■ the coordinate functions t_{i} on \mathbb{R}^{n}, pulled back to V. with the relations
- $c_{A B} e_{B^{\prime}}=c_{A B} \delta_{B}^{B^{\prime}}$ and $e_{A^{\prime}} c_{A B}=c_{A B} \delta_{A}^{A^{\prime}}$.
- $c_{A B} c_{B D}=c_{A B^{\prime}} c_{B^{\prime} D}$.

- $e_{A}=0$ if A is not bounded.
- $c_{A B} c_{B A}=t_{i} e_{A}$.

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition

An algebra A quasi-hereditary if it has an exceptional collection of standard modules which generate $A-\bmod$ (like Verma modules in category \mathcal{O}).

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition

An algebra A quasi-hereditary if it has an exceptional collection of standard modules which generate $A-\bmod$ (like Verma modules in category \mathcal{O}).

A positively graded algebra $A=A_{0} \oplus A_{>0}$ Koszul if the two natural gradings on $A^{\star}=\operatorname{Ext}_{A}^{*}\left(A_{0}, A_{0}\right)$ agree. A^{\star} is called the Koszul dual of A.

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition

An algebra A quasi-hereditary if it has an exceptional collection of standard modules which generate $A-\bmod$ (like Verma modules in category \mathcal{O}).

A positively graded algebra $A=A_{0} \oplus A_{>0}$ Koszul if the two natural gradings on $A^{\star}=\operatorname{Ext}_{A}^{*}\left(A_{0}, A_{0}\right)$ agree. A^{\star} is called the Koszul dual of A.

There's an equivalence of derived categories $D(A-\mathrm{gmod}) \cong D\left(A^{\star}-\mathrm{gmod}\right)$.

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition

An algebra A quasi-hereditary if it has an exceptional collection of standard modules which generate $A-\bmod$ (like Verma modules in category \mathcal{O}).

A positively graded algebra $A=A_{0} \oplus A_{>0}$ Koszul if the two natural gradings on $A^{\star}=\operatorname{Ext}_{A}^{*}\left(A_{0}, A_{0}\right)$ agree. A^{\star} is called the Koszul dual of A.

There's an equivalence of derived categories $D(A-\mathrm{gmod}) \cong D\left(A^{\star}-\mathrm{gmod}\right)$.

Theorem (BLPW)

- $A(\mathcal{V})$ is quasi-hereditary.

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition

An algebra A quasi-hereditary if it has an exceptional collection of standard modules which generate $A-\bmod$ (like Verma modules in category \mathcal{O}).

A positively graded algebra $A=A_{0} \oplus A_{>0}$ Koszul if the two natural gradings on $A^{\star}=\operatorname{Ext}_{A}^{*}\left(A_{0}, A_{0}\right)$ agree. A^{\star} is called the Koszul dual of A.

There's an equivalence of derived categories $D(A-\mathrm{gmod}) \cong D\left(A^{\star}-\mathrm{gmod}\right)$.

Theorem (BLPW)

- $A(\mathcal{V})$ is quasi-hereditary.

■ $A(\mathcal{V})$ is Koszul.

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition

An algebra A quasi-hereditary if it has an exceptional collection of standard modules which generate $A-\bmod$ (like Verma modules in category \mathcal{O}).

A positively graded algebra $A=A_{0} \oplus A_{>0}$ Koszul if the two natural gradings on $A^{\star}=\operatorname{Ext}_{A}^{*}\left(A_{0}, A_{0}\right)$ agree. A^{\star} is called the Koszul dual of A.

There's an equivalence of derived categories $D(A-\mathrm{gmod}) \cong D\left(A^{\star}-\mathrm{gmod}\right)$.

Theorem (BLPW)

- $A(\mathcal{V})$ is quasi-hereditary.
- $A(\mathcal{V})$ is Koszul.
\square The center $Z(A(\mathcal{V}))$ is the reduced Stanley-Reisner ring of $\mathbb{R}^{n} \rightarrow V^{*}$.

Examples

A few of these are algebras you might have heard of before:

Examples

A few of these are algebras you might have heard of before:

■ If

$$
V=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i} x_{i}=0\right\}
$$

then the hyperplane arrangement is the faces of a $n-1$-simplex, and the associated category is the block of category \mathcal{O} for $\mathfrak{s l}_{n}$ including the simple $L_{m \omega_{1}-\rho}$ (this is also a certain category of representations for the Cherednik algebra of \mathbb{Z}_{n}).

Examples

A few of these are algebras you might have heard of before:

■ If

$$
V=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i} x_{i}=0\right\}
$$

then the hyperplane arrangement is the faces of a $n-1$-simplex, and the associated category is the block of category \mathcal{O} for $\mathfrak{s l}_{n}$ including the simple $L_{m \omega_{1}-\rho}$ (this is also a certain category of representations for the Cherednik algebra of \mathbb{Z}_{n}).
■ If $V=\operatorname{span}(1, \ldots, 1)$, then the hyperplane arrangement is n points on a line, and the associated category is a regular block of parabolic category $\mathcal{O}^{\mathfrak{p}}$ for $\mathfrak{s l}_{n}$, where \mathfrak{p} is the parabolic preserving a line.

Examples

A few of these are algebras you might have heard of before:

■ If

$$
V=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \sum_{i} x_{i}=0\right\}
$$

then the hyperplane arrangement is the faces of a $n-1$-simplex, and the associated category is the block of category \mathcal{O} for $\mathfrak{s l}_{n}$ including the simple $L_{m \omega_{1}-\rho}$ (this is also a certain category of representations for the Cherednik algebra of \mathbb{Z}_{n}).
■ If $V=\operatorname{span}(1, \ldots, 1)$, then the hyperplane arrangement is n points on a line, and the associated category is a regular block of parabolic category $\mathcal{O}^{\mathfrak{p}}$ for $\mathfrak{s l}_{n}$, where \mathfrak{p} is the parabolic preserving a line.

Note: these are Koszul dual!

Gale duality

There's a natural duality on the set of polarized hyperplane arrangements:

Gale duality

There's a natural duality on the set of polarized hyperplane arrangements:

$$
\mathcal{V}=\left(V \subset \mathbb{R}^{n}, \xi, \nu\right) \Longleftrightarrow \mathcal{V}^{\vee}=\left(V^{\perp} \subset \mathbb{R}^{n},-\nu,-\xi\right)
$$

Gale duality

There's a natural duality on the set of polarized hyperplane arrangements:

$$
\mathcal{V}=\left(V \subset \mathbb{R}^{n}, \xi, \nu\right) \Longleftrightarrow \mathcal{V}^{\vee}=\left(V^{\perp} \subset \mathbb{R}^{n},-\nu,-\xi\right)
$$

This correspondence is surprisingly hard to visualize, so here are some simple examples

Gale duality

There's a natural duality on the set of polarized hyperplane arrangements:

$$
\mathcal{V}=\left(V \subset \mathbb{R}^{n}, \xi, \nu\right) \Longleftrightarrow \mathcal{V}^{\vee}=\left(V^{\perp} \subset \mathbb{R}^{n},-\nu,-\xi\right)
$$

This correspondence is surprisingly hard to visualize, so here are some simple examples

Gale duality

There's a natural duality on the set of polarized hyperplane arrangements:

$$
\mathcal{V}=\left(V \subset \mathbb{R}^{n}, \xi, \nu\right) \Longleftrightarrow \mathcal{V}^{\vee}=\left(V^{\perp} \subset \mathbb{R}^{n},-\nu,-\xi\right)
$$

This correspondence is surprisingly hard to visualize, so here are some simple examples

Gale duality

There's a natural duality on the set of polarized hyperplane arrangements:

$$
\mathcal{V}=\left(V \subset \mathbb{R}^{n}, \xi, \nu\right) \Longleftrightarrow \mathcal{V}^{\vee}=\left(V^{\perp} \subset \mathbb{R}^{n},-\nu,-\xi\right)
$$

This correspondence is surprisingly hard to visualize, so here are some simple examples

Theorem (BLPW)

$(A(\mathcal{V}))^{\star} \cong A\left(\mathcal{V}^{\vee}\right)$

Derived equivalences

The fact that our result depends on the parameters ξ and ν is a bit dissatisfying. How can we compare the algebras for \mathcal{V} and $\mathcal{V}^{\prime}=\left(V, \xi^{\prime}, \nu^{\prime}\right)$?

Derived equivalences

The fact that our result depends on the parameters ξ and ν is a bit dissatisfying. How can we compare the algebras for \mathcal{V} and $\mathcal{V}^{\prime}=\left(V, \xi^{\prime}, \nu^{\prime}\right)$?

Theorem (BLPW)

As along as all parameters are generic, we have an equivalence of derived categories $D(A(\mathcal{V})) \cong D\left(A\left(\mathcal{V}^{\prime}\right)\right)$, even though the algebras $A(\mathcal{V})$ and $A\left(\mathcal{V}^{\prime}\right)$ are generally not Morita equivalent.

Derived equivalences

The fact that our result depends on the parameters ξ and ν is a bit dissatisfying. How can we compare the algebras for \mathcal{V} and $\mathcal{V}^{\prime}=\left(V, \xi^{\prime}, \nu^{\prime}\right)$?

Theorem (BLPW)

As along as all parameters are generic, we have an equivalence of derived categories $D(A(\mathcal{V})) \cong D\left(A\left(\mathcal{V}^{\prime}\right)\right)$, even though the algebras $A(\mathcal{V})$ and $A\left(\mathcal{V}^{\prime}\right)$ are generally not Morita equivalent.

These isomorphisms are not canonical at all. In fact, they seem to only be unique up to an action of $\pi_{1}\left(\operatorname{Pol}_{\mathbb{C}}(V)\right)$, the complexification of the spaces of choices of generic polarization of V.
$\operatorname{Pol}_{\mathbb{C}}(V)$ is the complment of a new hyperplane arrangement called the doubled secondary arrangement.

Why?

So, these algebras have a really shocking amount of structure for some random relations we wrote down. What could possibly explain this?

Why?

So, these algebras have a really shocking amount of structure for some random relations we wrote down. What could possibly explain this?

If there are any experts in the audience on the Bernstein-Gelfand-Gelfand category $\mathcal{O}_{\mathfrak{g}}$, you might have noticed that the results above sound an awful lot like ones about $\mathcal{O}_{\mathfrak{g}}$.

So, these algebras have a really shocking amount of structure for some random relations we wrote down. What could possibly explain this?

If there are any experts in the audience on the Bernstein-Gelfand-Gelfand category $\mathcal{O}_{\mathfrak{g}}$, you might have noticed that the results above sound an awful lot like ones about $\mathcal{O}_{\mathfrak{g}}$.

One answer

Both categories can be realized as A-branes on a symplectic variety X (actually one that resolves a cone)!

So, these algebras have a really shocking amount of structure for some random relations we wrote down. What could possibly explain this?

If there are any experts in the audience on the Bernstein-Gelfand-Gelfand category $\mathcal{O}_{\mathfrak{g}}$, you might have noticed that the results above sound an awful lot like ones about $\mathcal{O}_{\mathfrak{g}}$.

One answer

Both categories can be realized as A-branes on a symplectic variety X (actually one that resolves a cone)!

- If you're an algebraist: an A-brane is a representation of a deformation quantization of functions on X.

So, these algebras have a really shocking amount of structure for some random relations we wrote down. What could possibly explain this?

If there are any experts in the audience on the Bernstein-Gelfand-Gelfand category $\mathcal{O}_{\mathfrak{g}}$, you might have noticed that the results above sound an awful lot like ones about $\mathcal{O}_{\mathfrak{g}}$.

One answer

Both categories can be realized as A-branes on a symplectic variety X (actually one that resolves a cone)!

■ If you're an algebraist: an A-brane is a representation of a deformation quantization of functions on X.

- If you're a symplectic geometer: an A-brane is an object in the Fukaya category of X. (Just for motivation!)

Symplectic cones

When I say "symplectic," I mean algebraically symplectic with a \mathbb{C}-valued holomorphic 2-form ω.

Symplectic cones

When I say "symplectic," I mean algebraically symplectic with a \mathbb{C}-valued holomorphic 2-form ω.

From the perspective of a \mathbb{R}-symplectic geometer, $\Re(\omega)$ and $\Im(\omega)$ are two symplectic forms, related by the complex structure. In all cases we'll discuss, these are actually $2 / 3$ of a hyperkähler structure.

Symplectic cones

When I say "symplectic," I mean algebraically symplectic with a \mathbb{C}-valued holomorphic 2-form ω.

From the perspective of a \mathbb{R}-symplectic geometer, $\Re(\omega)$ and $\Im(\omega)$ are two symplectic forms, related by the complex structure. In all cases we'll discuss, these are actually $2 / 3$ of a hyperkähler structure.

Algebraic symplectic implies Calabi-Yau, so it is very restrictive.

We'll be interested in a smooth symplectic variety \tilde{X} which is a resolution of an affine cone X (i.e. X is an affine variety invariant under scaling). In this case, we say \tilde{X} is a symplectic resolution.

Nilpotent cones

Let $\mathcal{N}_{\mathfrak{g}}$ be the cone of nilpotent elements in a complex Lie algebra \mathfrak{g}.

Nilpotent cones

Let $\mathcal{N}_{\mathfrak{g}}$ be the cone of nilpotent elements in a complex Lie algebra \mathfrak{g}.

There's a symplectic resolution of singularities, the Springer resolution

$$
\left.\{(n, \mathfrak{b}) \mid n \in \mathcal{N}, \mathfrak{b} \text { a Borel, } n \in \mathfrak{b}\}=\tilde{\mathcal{N}} \cong T^{*} G / B \rightarrow \mathcal{N}\right\}
$$

As a cotangent bundle, $T^{*} G / B$ has a natural symplectic form.

Nilpotent cones

Let $\mathcal{N}_{\mathfrak{g}}$ be the cone of nilpotent elements in a complex Lie algebra \mathfrak{g}.

There's a symplectic resolution of singularities, the Springer resolution

$$
\left.\{(n, \mathfrak{b}) \mid n \in \mathcal{N}, \mathfrak{b} \text { a Borel, } n \in \mathfrak{b}\}=\tilde{\mathcal{N}} \cong T^{*} G / B \rightarrow \mathcal{N}\right\}
$$

As a cotangent bundle, $T^{*} G / B$ has a natural symplectic form.
The universal enveloping algebra of \mathfrak{g} is a deformation quantization of \mathcal{N}, so the BGG category \mathcal{O} obviously fits into the algebraic definition of A-branes I gave. For the geometric one, this is trickier, but a theorem:

Theorem (Beilinson-Bernstein, Nadler-Zaslow)

There is in an inclusion $\left(\mathcal{O}_{\mathfrak{g}}\right)_{0} \hookrightarrow \operatorname{Fuk}\left(T^{*} G / B\right)$.

Hypertoric varieties

What symplectic cone corresponds to a hyperplane arrangement? If V is defined over \mathbb{Z}, then $\mathbb{C} \otimes_{\mathbb{R}} V^{\perp}$ is the Lie algebra of a subtorus $T \subset\left(\mathbb{C}^{*}\right)^{n}$. As always, we have a canonical moment map $\mu: T^{*} \mathbb{C}^{n} \rightarrow \mathfrak{t}^{*}$.

Let $X / / \alpha G$ denote the GIT quotient of a variety X for the character α.

Hypertoric varieties

What symplectic cone corresponds to a hyperplane arrangement? If V is defined over \mathbb{Z}, then $\mathbb{C} \otimes_{\mathbb{R}} V^{\perp}$ is the Lie algebra of a subtorus $T \subset\left(\mathbb{C}^{*}\right)^{n}$. As always, we have a canonical moment map $\mu: T^{*} \mathbb{C}^{n} \rightarrow \mathfrak{t}^{*}$.

Let $X / /{ }_{\alpha} G$ denote the GIT quotient of a variety X for the character α.

One can do a symplectic reduction in the algebraic category

$$
\mathfrak{M}_{\alpha}=\mu^{-1}(0) / / \alpha T=\bigsqcup_{v \in V} N^{*}(T \cdot v) / / \alpha T
$$

and obtain a hypertoric variety, closely tied to the combinatorics of T acting on V. For $\alpha=0$ this is an cone, and for α generic, a symplectic resolution of \mathfrak{M}_{0}. (You might prefer to think of this as a hyperkähler reduction).

Hypertoric varieties

What symplectic cone corresponds to a hyperplane arrangement? If V is defined over \mathbb{Z}, then $\mathbb{C} \otimes_{\mathbb{R}} V^{\perp}$ is the Lie algebra of a subtorus $T \subset\left(\mathbb{C}^{*}\right)^{n}$. As always, we have a canonical moment map $\mu: T^{*} \mathbb{C}^{n} \rightarrow \mathfrak{t}^{*}$.

Let $X / / \alpha G$ denote the GIT quotient of a variety X for the character α.

One can do a symplectic reduction in the algebraic category

$$
\mathfrak{M}_{\alpha}=\mu^{-1}(0) / / \alpha T=\bigsqcup_{v \in V} N^{*}(T \cdot v) / / \alpha T
$$

and obtain a hypertoric variety, closely tied to the combinatorics of T acting on V. For $\alpha=0$ this is an cone, and for α generic, a symplectic resolution of \mathfrak{M}_{0}. (You might prefer to think of this as a hyperkähler reduction).

You can think of this as an "enhanced cotangent bundle" to the toric variety $\mathbb{C}^{n} / /{ }_{\alpha} T$.

Hypertoric varieties and hyperplane arrangements

Our original data can be recovered as the affine hyperplane arrangement $(\operatorname{ker} \iota, \alpha,-)$ where $\iota: \mathbb{R}^{n} \rightarrow \mathfrak{t}_{\mathbb{R}}^{*}$ is the natural map.

Hypertoric varieties and hyperplane arrangements

Our original data can be recovered as the affine hyperplane arrangement $(\operatorname{ker} \iota, \alpha,-)$ where $\iota: \mathbb{R}^{n} \rightarrow \mathfrak{t}_{\mathbb{R}}^{*}$ is the natural map.

Hypertoric varieties and hyperplane arrangements

Our original data can be recovered as the affine hyperplane arrangement $(\operatorname{ker} \iota, \alpha,-)$ where $\iota: \mathbb{R}^{n} \rightarrow \mathfrak{t}_{\mathbb{R}}^{*}$ is the natural map.

Hypertoric varieties and hyperplane arrangements

Our original data can be recovered as the affine hyperplane arrangement $(\operatorname{ker} \iota, \alpha,-)$ where $\iota: \mathbb{R}^{n} \rightarrow \mathfrak{t}_{\mathbb{R}}^{*}$ is the natural map.

Proposition

Each toric variety X_{C} corresponding to a chamber C in the complement of the H_{i} 's is a Lagrangian subvariety of \mathfrak{M}_{α}, and \mathfrak{M}_{α} is a symplectic plumbing of their cotangent bundles.

$A(\mathcal{V})$ and geometry

The category $A(\mathcal{V})-\bmod$ for a polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ has a geometric interpretation similar to that of $\mathcal{O}_{\mathfrak{g}}$.

$A(\mathcal{V})$ and geometry

The category $A(\mathcal{V})-\bmod$ for a polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ has a geometric interpretation similar to that of $\mathcal{O}_{\mathfrak{g}}$.

Theorem (BLPW)

$A(\mathcal{V})-\bmod$ has a full and faithful inclusion into the category of representations of a deformation quantization M_{V} of \mathfrak{M}_{ξ}, with its image described by conditions similar to $\left(\mathcal{O}_{\mathfrak{g}}\right)_{0}$.

$A(\mathcal{V})$ and geometry

The category $A(\mathcal{V})-\bmod$ for a polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ has a geometric interpretation similar to that of $\mathcal{O}_{\mathfrak{g}}$.

Theorem (BLPW)

$A(\mathcal{V})-\bmod$ has a full and faithful inclusion into the category of representations of a deformation quantization M_{V} of \mathfrak{M}_{ξ}, with its image described by conditions similar to $\left(\mathcal{O}_{\mathfrak{g}}\right)_{0}$.

The algebra M_{V} can be constructed by non-commutative Hamiltonian reduction of the algebra of differential operators $\mathcal{D}_{\mathbb{C}^{n}}$ by T, and analyzed explicitly.

$A(\mathcal{V})$ and geometry

The category $A(\mathcal{V})-\bmod$ for a polarized arrangement $\mathcal{V}=(V, \xi, \nu)$ has a geometric interpretation similar to that of $\mathcal{O}_{\mathfrak{g}}$.

Theorem (BLPW)

$A(\mathcal{V})-\bmod$ has a full and faithful inclusion into the category of representations of a deformation quantization M_{V} of \mathfrak{M}_{ξ}, with its image described by conditions similar to $\left(\mathcal{O}_{\mathfrak{g}}\right)_{0}$.

The algebra M_{V} can be constructed by non-commutative Hamiltonian reduction of the algebra of differential operators $\mathcal{D}_{\mathbb{C}^{n}}$ by T, and analyzed explicitly.

This deformation quantization of \mathfrak{M}_{V} can be regarded as an analogue of the universal enveloping algebra, and one can search for analogues of all results of Lie theory. But that's another talk.

Deformation quantization

I believe that what I've told you thus far is just a hint of a much larger picture incorporating many more symplectic varieties. Let \tilde{X} is a smooth symplectic variety which is a resolution of singularities of an affine cone X.

Deformation quantization

I believe that what I've told you thus far is just a hint of a much larger picture incorporating many more symplectic varieties. Let \tilde{X} is a smooth symplectic variety which is a resolution of singularities of an affine cone X.

In order to do this we should develop some tools for producing these categories of "A-branes." The best tool for this is deformation quantization.

Deformation quantization

I believe that what I've told you thus far is just a hint of a much larger picture incorporating many more symplectic varieties. Let \tilde{X} is a smooth symplectic variety which is a resolution of singularities of an affine cone X.

In order to do this we should develop some tools for producing these categories of "A-branes." The best tool for this is deformation quantization.

Proposition (Bezrukavnikov-Kaledin)

There is a universal family A_{X}^{λ} of deformation quantizations of X over $H^{2}(\tilde{X})$.

Examples

Some pretty interesting algebras show up when we do this. A couple of them are quite familiar, but it also gives us some new algebras which we can think of as analogues.

Examples

Some pretty interesting algebras show up when we do this. A couple of them are quite familiar, but it also gives us some new algebras which we can think of as analogues.
nilcone: $\mathcal{N}_{\mathfrak{g}} \quad \Longleftrightarrow$ universal enveloping algebra: $U(\mathfrak{g})$

Examples

Some pretty interesting algebras show up when we do this. A couple of them are quite familiar, but it also gives us some new algebras which we can think of as analogues.
nilcone: $\mathcal{N}_{\mathfrak{g}} \quad \Longleftrightarrow$ universal enveloping algebra: $U(\mathfrak{g})$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \Longleftrightarrow$ rational Cherednik algebra U_{c} for S_{n}

Examples

Some pretty interesting algebras show up when we do this. A couple of them are quite familiar, but it also gives us some new algebras which we can think of as analogues.
nilcone: $\mathcal{N}_{\mathfrak{g}} \quad \Longleftrightarrow$ universal enveloping algebra: $U(\mathfrak{g})$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \Longleftrightarrow$ rational Cherednik algebra U_{c} for S_{n} affine Grassmannian slice: $\mathfrak{W}_{\mu}^{\lambda} \stackrel{?}{\Longleftrightarrow}$ primitive quotient of shifted Yangian

Examples

Some pretty interesting algebras show up when we do this. A couple of them are quite familiar, but it also gives us some new algebras which we can think of as analogues.
nilcone: $\mathcal{N}_{\mathfrak{g}} \quad \Longleftrightarrow$ universal enveloping algebra: $U(\mathfrak{g})$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \Longleftrightarrow$ rational Cherednik algebra U_{c} for S_{n} affine Grassmannian slice: $\mathfrak{W}_{\mu}^{\lambda} \stackrel{?}{\Longleftrightarrow}$ primitive quotient of shifted Yangian quiver variety: $\mathfrak{Q}_{\mu}^{\lambda}$

bere be dragons

Examples

Some pretty interesting algebras show up when we do this. A couple of them are quite familiar, but it also gives us some new algebras which we can think of as analogues.
nilcone: $\mathcal{N}_{\mathfrak{g}} \quad \Longleftrightarrow$ universal enveloping algebra: $U(\mathfrak{g})$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \Longleftrightarrow$ rational Cherednik algebra U_{c} for S_{n} affine Grassmannian slice: $\mathfrak{W}_{\mu}^{\lambda} \stackrel{?}{\Longleftrightarrow}$ primitive quotient of shifted Yangian quiver variety: $\mathfrak{Q}_{\mu}^{\lambda}$

bere be dragons

"Dragons" is a slight exaggeration; we know what the algebras are, but as far as I know, there is no literature on them.

Category \mathcal{O}

For any symplectic cone with a Hamiltonian \mathbb{C}^{*}-action, we have a class of categories of modules over the deformation quantization, which we can think of as analogues of $\mathcal{O}_{\mathfrak{g}}$.

Category \mathcal{O}

For any symplectic cone with a Hamiltonian \mathbb{C}^{*}-action, we have a class of categories of modules over the deformation quantization, which we can think of as analogues of $\mathcal{O}_{\mathfrak{g}}$.

■ If you're an algebraist, you'll take modules locally finite for the action of the non-negative weight subalgebra for this \mathbb{C}^{*}-action.

Category \mathcal{O}

For any symplectic cone with a Hamiltonian \mathbb{C}^{*}-action, we have a class of categories of modules over the deformation quantization, which we can think of as analogues of $\mathcal{O}_{\mathfrak{g}}$.

■ If you're an algebraist, you'll take modules locally finite for the action of the non-negative weight subalgebra for this \mathbb{C}^{*}-action.

■ If you're a symplectic geometer, you'll take branes with particular "conditions at ∞ " determined by the \mathbb{C}^{*}-action.

Category \mathcal{O}

For any symplectic cone with a Hamiltonian \mathbb{C}^{*}-action, we have a class of categories of modules over the deformation quantization, which we can think of as analogues of $\mathcal{O}_{\mathfrak{g}}$.

■ If you're an algebraist, you'll take modules locally finite for the action of the non-negative weight subalgebra for this \mathbb{C}^{*}-action.

■ If you're a symplectic geometer, you'll take branes with particular "conditions at ∞ " determined by the \mathbb{C}^{*}-action.

Category \mathcal{O}

For any symplectic cone with a Hamiltonian \mathbb{C}^{*}-action, we have a class of categories of modules over the deformation quantization, which we can think of as analogues of $\mathcal{O}_{\mathfrak{g}}$.

- If you're an algebraist, you'll take modules locally finite for the action of the non-negative weight subalgebra for this \mathbb{C}^{*}-action.
■ If you're a symplectic geometer, you'll take branes with particular "conditions at ∞ " determined by the \mathbb{C}^{*}-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian \mathbb{C}^{*}-action (with suitable hypotheses), category \mathcal{O} is Koszul, quasi-hereditary, and up to derived equivalence, depends only on the fixed points of the \mathbb{C}^{*}-action.

But what about the Koszul duality results? How can we generalize the relationship between Gale dual hypertoric varieties?

Category \mathcal{O}

For any symplectic cone with a Hamiltonian \mathbb{C}^{*}-action, we have a class of categories of modules over the deformation quantization, which we can think of as analogues of $\mathcal{O}_{\mathfrak{g}}$.

- If you're an algebraist, you'll take modules locally finite for the action of the non-negative weight subalgebra for this \mathbb{C}^{*}-action.
■ If you're a symplectic geometer, you'll take branes with particular "conditions at ∞ " determined by the \mathbb{C}^{*}-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian \mathbb{C}^{*}-action (with suitable hypotheses), category \mathcal{O} is Koszul, quasi-hereditary, and up to derived equivalence, depends only on the fixed points of the \mathbb{C}^{*}-action.

But what about the Koszul duality results? How can we generalize the relationship between Gale dual hypertoric varieties?

S-duality

Based on various pieces of evidence, Braden, Licata, Proudfoot and I have suggested that this should reflect some kind of underlying duality $X \leftrightarrow X^{\vee}$ between symplectic cones. My collaborators originally dubbed this "symplectic duality" but it seems that for talking with physicists in the audience, the name should be shortened to "S-duality."

Conjecture

Category \mathcal{O} 's attached to dual cones are Koszul dual (using a correspondence between \mathbb{C}^{*}-actions on one side and resolutions on the other).

S-duality

Based on various pieces of evidence, Braden, Licata, Proudfoot and I have suggested that this should reflect some kind of underlying duality $X \leftrightarrow X^{\vee}$ between symplectic cones. My collaborators originally dubbed this "symplectic duality" but it seems that for talking with physicists in the audience, the name should be shortened to "S-duality."

Conjecture

Category \mathcal{O} 's attached to dual cones are Koszul dual (using a correspondence between \mathbb{C}^{*}-actions on one side and resolutions on the other).

That is, we have a canonical isomorphism $K_{0}\left(\mathcal{O}_{X}\right) \cong K_{0}\left(\mathcal{O}_{X^{\vee}}\right)$, so these really categorify the same thing, but often one feature of the category is more visible on one side than the other.

S-duality

Based on various pieces of evidence, Braden, Licata, Proudfoot and I have suggested that this should reflect some kind of underlying duality $X \leftrightarrow X^{\vee}$ between symplectic cones. My collaborators originally dubbed this "symplectic duality" but it seems that for talking with physicists in the audience, the name should be shortened to "S-duality."

Conjecture

Category \mathcal{O} 's attached to dual cones are Koszul dual (using a correspondence between \mathbb{C}^{*}-actions on one side and resolutions on the other).

That is, we have a canonical isomorphism $K_{0}\left(\mathcal{O}_{X}\right) \cong K_{0}\left(\mathcal{O}_{X^{\vee}}\right)$, so these really categorify the same thing, but often one feature of the category is more visible on one side than the other.

Observation

Our examples coincide with a notion of duality in physics; they are the Higgs branches of mirror dual 3-dimensional gauge theories.

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:
hypertoric variety: $\mathfrak{M}_{\mathcal{A}}$

Gale dual: $\mathfrak{M}_{\mathcal{A}^{\vee}}$

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:
hypertoric variety: $\mathfrak{M}_{\mathcal{A}}$
nilcone: $\mathcal{N}_{\mathfrak{g}}$

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:
hypertoric variety: $\mathfrak{M}_{\mathcal{A}}$
nilcone: $\mathcal{N}_{\mathfrak{g}}$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$

Gale dual: $\mathfrak{M}_{\mathcal{A} \vee}$
Langlands dual: $\mathcal{N}_{L_{\mathfrak{g}}}$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:
hypertoric variety: $\mathfrak{M}_{\mathcal{A}}$
nilcone: $\mathcal{N}_{\mathfrak{g}}$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$
G_{I}-instantons on $\widetilde{\mathbb{C}^{2} / \Gamma_{J}}$

$\Gamma_{I} \stackrel{\text { McKay }}{\longleftrightarrow} G_{I}$

Gale dual: $\mathfrak{M}_{\mathcal{A} \vee}$
Langlands dual: $\mathcal{N}_{L_{\mathfrak{g}}}$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$
G_{J}-instantons on $\widetilde{\mathbb{C}^{2} / \Gamma_{I}}$

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:
hypertoric variety: $\mathfrak{M}_{\mathcal{A}}$
nilcone: $\mathcal{N}_{\mathfrak{g}}$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$
G_{I}-instantons on $\widetilde{\mathbb{C}^{2} / \Gamma_{J}}$
quiver variety: $\mathfrak{Q}_{\mu}^{\lambda}$

$\Gamma_{I} \xrightarrow{\text { McKay }} G_{I}$

Gale dual: $\mathfrak{M}_{\mathcal{A} \vee}$
Langlands dual: $\mathcal{N}_{L_{\mathfrak{g}}}$ symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ G_{J}-instantons on $\widetilde{\mathbb{C}^{2} / \Gamma_{I}}$
affine Grass. slice: $\mathfrak{W}_{\mu}^{\lambda}$

Examples of duality

So here's the list of symplectic cones thus far that we believe we have found the dual to:
hypertoric variety: $\mathfrak{M}_{\mathcal{A}}$

$$
\text { nilcone: } \mathcal{N}_{\mathfrak{g}}
$$

symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$
G_{I}-instantons on $\widetilde{\mathbb{C}^{2} / \Gamma_{J}}$

$$
\Gamma_{I} \stackrel{\text { McKay }}{\longleftrightarrow} G_{I}
$$

quiver variety: $\mathfrak{Q}_{\mu}^{\lambda}$

Gale dual: $\mathfrak{M}_{\mathcal{A}^{\vee}}$
Langlands dual: $\mathcal{N}_{L_{\mathfrak{g}}}$
symmetric power: $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$
G_{J}-instantons on $\widetilde{\mathbb{C}^{2} / \Gamma_{I}}$

Simplest interesting example: $T^{*} \mathbb{P}^{n-1} \Leftrightarrow \mathbb{C}^{2} / \mathbb{Z}_{n}$ or, in terms of cones, $M_{n \times n}^{\mathrm{rk} 1} \Leftrightarrow \mathbb{C}^{2} / \mathbb{Z}_{n}$.

S-duality

While the representation theoretic interpretation of duality is probably the most exciting, there are other, more geometric interpretations as well.

Conjecture

The spaces \tilde{X} and \tilde{X}^{\vee} carry actions of tori S and T such that the fixed points \tilde{X}^{S} and $\left(\tilde{X}^{\vee}\right)^{T}$ are in natural bijection.

S-duality

While the representation theoretic interpretation of duality is probably the most exciting, there are other, more geometric interpretations as well.

Conjecture

The spaces \tilde{X} and \tilde{X}^{\vee} carry actions of tori S and T such that the fixed points \tilde{X}^{S} and $\left(\tilde{X}^{\vee}\right)^{T}$ are in natural bijection.

■ For hypertoric varieties, the set of hyperplanes going through a fixed point are the complement of the set going through a fixed point in the dual.

S-duality

While the representation theoretic interpretation of duality is probably the most exciting, there are other, more geometric interpretations as well.

Conjecture

The spaces \tilde{X} and \tilde{X}^{\vee} carry actions of tori S and T such that the fixed points \tilde{X}^{S} and $\left(\tilde{X}^{\vee}\right)^{T}$ are in natural bijection.

■ For hypertoric varieties, the set of hyperplanes going through a fixed point are the complement of the set going through a fixed point in the dual.
■ For $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$, this is taking transpose of partitions.

S-duality

While the representation theoretic interpretation of duality is probably the most exciting, there are other, more geometric interpretations as well.

Conjecture

The spaces \tilde{X} and \tilde{X}^{\vee} carry actions of tori S and T such that the fixed points \tilde{X}^{S} and $\left(\tilde{X}^{\vee}\right)^{T}$ are in natural bijection.

■ For hypertoric varieties, the set of hyperplanes going through a fixed point are the complement of the set going through a fixed point in the dual.

- For $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$, this is taking transpose of partitions.

■ For Langlands dual flag varieties, this the bijection between the Weyl groups.

S-duality

While the representation theoretic interpretation of duality is probably the most exciting, there are other, more geometric interpretations as well.

Conjecture

The spaces \tilde{X} and \tilde{X}^{\vee} carry actions of tori S and T such that the fixed points \tilde{X}^{S} and $\left(\tilde{X}^{\vee}\right)^{T}$ are in natural bijection.

■ For hypertoric varieties, the set of hyperplanes going through a fixed point are the complement of the set going through a fixed point in the dual.
■ For $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$, this is taking transpose of partitions.
■ For Langlands dual flag varieties, this the bijection between the Weyl groups.

For physicists, this seems to be the fact that fixed points are "supersymmetric vacua."

S-duality

Furthermore, we expect a relation between the strata of the cones X and X^{\vee}

Conjecture

The spaces X and X^{\vee} carry canonical stratifications such that the strata are in order-reversing bijection.

S-duality

Furthermore, we expect a relation between the strata of the cones X and X^{\vee}

Conjecture

The spaces X and X^{\vee} carry canonical stratifications such that the strata are in order-reversing bijection.

■ For hypertoric varieties, this is taking complements of coloop-free flats.

S-duality

Furthermore, we expect a relation between the strata of the cones X and X^{\vee}

Conjecture

The spaces X and X^{\vee} carry canonical stratifications such that the strata are in order-reversing bijection.

■ For hypertoric varieties, this is taking complements of coloop-free flats.
■ For nilpotent matrices, this is taking transpose of Jordan type.

S-duality

Furthermore, we expect a relation between the strata of the cones X and X^{\vee}

Conjecture

The spaces X and X^{\vee} carry canonical stratifications such that the strata are in order-reversing bijection.

■ For hypertoric varieties, this is taking complements of coloop-free flats.
\square For nilpotent matrices, this is taking transpose of Jordan type.
■ For general nilcones. . . the numbers don't match up.

S-duality

Furthermore, we expect a relation between the strata of the cones X and X^{\vee}

Conjecture

The spaces X and X^{\vee} carry canonical stratifications such that some of the strata are in order-reversing bijection.

■ For hypertoric varieties, this is taking complements of coloop-free flats.
■ For nilpotent matrices, this is taking transpose of Jordan type.
■ For general nilcones. . . the numbers don't match up. We seem to have to restrict to certain "special" nilpotent orbits to get a bijection.

S-duality

Furthermore, we expect a relation between the strata of the cones X and X^{\vee}

Conjecture

The spaces X and X^{\vee} carry canonical stratifications such that some of the strata are in order-reversing bijection.

■ For hypertoric varieties, this is taking complements of coloop-free flats.
■ For nilpotent matrices, this is taking transpose of Jordan type.
■ For general nilcones. . . the numbers don't match up. We seem to have to restrict to certain "special" nilpotent orbits to get a bijection.

For physicists, these seem to come from the other branches of the moduli space of vacua.

S-duality

We also expect a kind of recursion (or perhaps you could call it functoriality)

Conjecture

If the strata X_{α} and $X_{\alpha^{\vee}}^{\vee}$ match under this bijection, then X_{α} is S-dual to the slice to $X_{\alpha^{\vee}}^{\vee}$ in X^{\vee}

S-duality

We also expect a kind of recursion (or perhaps you could call it functoriality)

Conjecture

If the strata X_{α} and $X_{\alpha^{\vee}}^{\vee}$ match under this bijection, then X_{α} is S-dual to the slice to $X_{\alpha^{\vee}}^{\vee}$ in X^{\vee}

■ For hypertoric varieties, this is the compatibility of Gale duality with restriction and localization.

S-duality

We also expect a kind of recursion (or perhaps you could call it functoriality)

Conjecture

If the strata X_{α} and $X_{\alpha \vee}^{\vee}$ match under this bijection, then X_{α} is S-dual to the slice to $X_{\alpha^{\vee}}^{\vee}$ in X^{\vee}

■ For hypertoric varieties, this is the compatibility of Gale duality with restriction and localization.
■ For nilpotent matrices and spaces of A_{n} instantons, there is good evidence for this (some of it coming from physics).

S-duality

Unfortunately, at the moment, we've only been able to work out various examples "by hand," but I feel the signs are encouraging. Not to mention that a lot of beautiful geometry, representation theory and combinatorics show up in the working of the examples.

S-duality

Unfortunately, at the moment, we've only been able to work out various examples "by hand," but I feel the signs are encouraging. Not to mention that a lot of beautiful geometry, representation theory and combinatorics show up in the working of the examples.

Intermission!

Flow-in cells

Let we now try to give you some slightly more precise geometry:

I'll assume for now that we have a torus T with a fixed choice of $\mathbb{C}^{*} \hookrightarrow T$, acting with isolated fixed points on \tilde{X}, which is a symplectic resolution of a cone $X \stackrel{\pi}{\longleftarrow} \tilde{X}$.

Flow-in cells

Let we now try to give you some slightly more precise geometry:

I'll assume for now that we have a torus T with a fixed choice of $\mathbb{C}^{*} \hookrightarrow T$, acting with isolated fixed points on \tilde{X}, which is a symplectic resolution of a cone $X \stackrel{\pi}{\longleftarrow} \tilde{X}$.

For each $x \in X^{T}$, I have the Lagrangian flow-in cell

$$
F_{x}=\left\{y \in X \mid \lim _{t \rightarrow 0} t \cdot y=x\right\}
$$

Conjecture

If X_{α} is the smallest "special" stratum containing $\pi\left(F_{x}\right)$, then $X_{\alpha^{\vee}}^{\vee}$ is the smallest "special" stratum containing $\pi\left(F_{x} \vee\right)$

Flow-in cells

For a taste of what this says: the generic stratum and 0 stratum must switch under \vee, so this says $F_{x} \subset \pi^{-1}(0)$ iff $F_{x} \vee$ isn't contained in any smaller stratum.

That is, duality switches core components (components of $\left.\pi^{-1}(0)\right)$ and MV cycles (components of the flow-in of the identity in X^{\vee}).

Flow-in cells

For a taste of what this says: the generic stratum and 0 stratum must switch under \vee, so this says $F_{x} \subset \pi^{-1}(0)$ iff $F_{x} \vee$ isn't contained in any smaller stratum.

That is, duality switches core components (components of $\pi^{-1}(0)$) and MV cycles (components of the flow-in of the identity in X^{\vee}).

A similar, but more complex phenomenon seems to hold for the intermediate strata: now we obtain an MV cycle in X_{α} and a core component of the resolution of the slice, which switch under duality.

This should be thought of as a generalization of the cell theory of category \mathcal{O}, which is what we obtain in the case of the flag variety.

Equivariant cohomology of \tilde{X}

Now, assume \tilde{X} is equivariantly formal. That is, we have an injection

$$
H_{T}^{*}(\tilde{X}) \rightarrow H_{T}^{*}\left(\tilde{X}^{T}\right) \cong \oplus_{a \in \tilde{X}^{T}} H_{T}(\{a\}) .
$$

Equivariant cohomology of \tilde{X}

Now, assume \tilde{X} is equivariantly formal. That is, we have an injection

$$
H_{T}^{*}(\tilde{X}) \rightarrow H_{T}^{*}\left(\tilde{X}^{T}\right) \cong \oplus_{a \in \tilde{X}^{T}} H_{T}(\{a\})
$$

Let $R_{\tilde{X}}$ be the subring of $H_{T}^{*}(\tilde{X})$ generated by H_{T}^{2} over H_{T}^{0}. More geometrically, we have

$$
\operatorname{Spec} R_{\tilde{X}}=\bigcup_{a \in \tilde{X}^{T}} H_{2}^{T}(\{a\}) \subset H_{2}^{T}(\tilde{X}) .
$$

That is, all information about $R_{\tilde{X}}$ is encoded in this subspace arrangement.

Equivariant cohomology of \tilde{X}

Now, assume \tilde{X} is equivariantly formal. That is, we have an injection

$$
H_{T}^{*}(\tilde{X}) \rightarrow H_{T}^{*}\left(\tilde{X}^{T}\right) \cong \oplus_{a \in \tilde{X}^{T}} H_{T}(\{a\}) .
$$

Let $R_{\tilde{X}}$ be the subring of $H_{T}^{*}(\tilde{X})$ generated by H_{T}^{2} over H_{T}^{0}. More geometrically, we have

$$
\operatorname{Spec} R_{\tilde{X}}=\bigcup_{a \in \tilde{X}^{T}} H_{2}^{T}(\{a\}) \subset H_{2}^{T}(\tilde{X}) .
$$

That is, all information about $R_{\tilde{X}}$ is encoded in this subspace arrangement.

There is an obvious "duality" on subspace arrangements, sending all subspaces to their annihilator. Let

$$
R_{\tilde{X}}^{\vee}=\mathbb{C}\left[\bigcup_{a \in \tilde{X}^{T}} H_{2}^{T}(\{a\})^{\perp}\right] \subset H_{2}^{T}(\tilde{X})^{*}
$$

Examples

To keep up with our running examples:

Examples

To keep up with our running examples:

```
Variety \(\tilde{X}\)
    \(T^{*} G / B\)
        \(\mathfrak{M}_{\mathcal{V}}\)
\(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\)
```


Examples

To keep up with our running examples:

```
Variety \(\tilde{X} \quad \operatorname{Spec} R\)
    \(T^{*} G / B \quad \bigcup_{w \in W} \Gamma_{w} \subset \mathfrak{t}^{*} \oplus \mathfrak{t}^{*}\)
    \(\mathfrak{M}_{\mathcal{V}} \quad \bigcup_{\beta \text { a basis of } V^{*}} \mathbb{C}^{\beta} \subset \mathbb{C}^{n}\)
\(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \quad \bigcup_{\lambda \dashv n}(1, \operatorname{Con}(\lambda)) \subset \mathbb{C}^{2}\)
```


Examples

To keep up with our running examples:

$$
\begin{array}{cc}
\text { Variety } \tilde{X} & \operatorname{Spec} R \\
T^{*} G / B & \bigcup_{w \in W} \Gamma_{w} \subset \mathfrak{t}^{*} \oplus \mathfrak{t}^{*} \\
\mathfrak{M}_{V} & \bigcup_{\beta \text { a basis of } V^{*}} \mathbb{C}^{\beta} \subset \mathbb{C}^{n} \\
\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) & \bigcup_{\lambda \dashv n}(1, \operatorname{Con}(\lambda)) \subset \mathbb{C}^{2}
\end{array}
$$

Observation (Goresky-MacPherson, BLPW)

For all the examples above where the natural torus action has isolated fixed points, the "symplectic dual" \tilde{X}^{\vee} also has an action of a torus S such that

$$
R_{\tilde{X}}^{\vee}=R_{\tilde{X}^{\vee}} .
$$

Examples

To keep up with our running examples:

Variety \tilde{X}	$\operatorname{Spec} R$	Duality
$T^{*} G / B$	$\bigcup_{w \in W} \Gamma_{w} \subset \mathfrak{t}^{*} \oplus \mathfrak{t}^{*}$	Langlands
\mathfrak{M}_{V}	$\bigcup_{\beta \text { a basis of } V^{*}} \mathbb{C}^{\beta} \subset \mathbb{C}^{n}$	Gale
$\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$	$\bigcup_{\lambda \dashv n}(1, \operatorname{Con}(\lambda)) \subset \mathbb{C}^{2}$	self-dual

Observation (Goresky-MacPherson, BLPW)

For all the examples above where the natural torus action has isolated fixed points, the "symplectic dual" \tilde{X}^{\vee} also has an action of a torus S such that

$$
R_{\tilde{X}}^{\vee}=R_{\tilde{X}^{\vee}} .
$$

Localization duality for Koszul algebras

Interestingly, the same phenomenon holds for a general class of Koszul algebras, independent of any connection to geometry.

Localization duality for Koszul algebras

Interestingly, the same phenomenon holds for a general class of Koszul algebras, independent of any connection to geometry.

Any Koszul algebra A over an algebraically closed field k has a canonical flat deformation \grave{A} over $Z\left(A^{\star}\right)_{2}$ the degree 2 part of the center of the dual A^{\star}.

Localization duality for Koszul algebras

Interestingly, the same phenomenon holds for a general class of Koszul algebras, independent of any connection to geometry.

Any Koszul algebra A over an algebraically closed field k has a canonical flat deformation \grave{A} over $Z\left(A^{\star}\right)_{2}$ the degree 2 part of the center of the dual A^{\star}.

Assume that A is quasi-hereditary, and the center $Z(\grave{A})$ is also flat.
Let R_{A} be the subalgebra of $Z(\grave{A})$ generated by $Z(\grave{A})_{2}$. As before, Spec $R_{A} \subset Z\left(\grave{A}^{\star}\right)$ is a union of subspaces. Let R_{A}^{\vee} be the coordinate ring of the union of the annihilators.

Localization duality for Koszul algebras

Interestingly, the same phenomenon holds for a general class of Koszul algebras, independent of any connection to geometry.

Any Koszul algebra A over an algebraically closed field k has a canonical flat deformation \grave{A} over $Z\left(A^{\star}\right)_{2}$ the degree 2 part of the center of the dual A^{\star}.

Assume that A is quasi-hereditary, and the center $Z(\grave{A})$ is also flat.
Let R_{A} be the subalgebra of $Z(\grave{A})$ generated by $Z(\grave{A})_{2}$. As before, Spec $R_{A} \subset Z\left(\grave{A}^{\star}\right)$ is a union of subspaces. Let R_{A}^{\vee} be the coordinate ring of the union of the annihilators.

Theorem (BLPW)

$R_{A}^{\vee}=R_{A^{\star}}$

Localization duality for Koszul algebras

Interestingly, the same phenomenon holds for a general class of Koszul algebras, independent of any connection to geometry.

Any Koszul algebra A over an algebraically closed field k has a canonical flat deformation \grave{A} over $Z\left(A^{\star}\right)_{2}$ the degree 2 part of the center of the dual A^{\star}.

Assume that A is quasi-hereditary, and the center $Z(\grave{A})$ is also flat. Let R_{A} be the subalgebra of $Z(\grave{A})$ generated by $Z(\grave{A})_{2}$. As before, Spec $R_{A} \subset Z\left(\grave{A}^{\star}\right)$ is a union of subspaces. Let R_{A}^{\vee} be the coordinate ring of the union of the annihilators.

Theorem (BLPW)

$R_{A}^{\vee}=R_{A^{\star}}$
As a corollary, proving a categorical duality would imply the cohomological duality on the previous page.

Geometric representation theory

In the late '90s and early '00s, there appeared on the scene two beautiful and remarkable contructions of the representations of a Lie group based on the geometry of two very different spaces:

Geometric representation theory

In the late '90s and early '00s, there appeared on the scene two beautiful and remarkable contructions of the representations of a Lie group based on the geometry of two very different spaces:

■ Quiver varieties (Lusztig, Nakajima, Ginzburg,...)

Geometric representation theory

In the late '90s and early '00s, there appeared on the scene two beautiful and remarkable contructions of the representations of a Lie group based on the geometry of two very different spaces:

■ Quiver varieties (Lusztig, Nakajima, Ginzburg,...)
■ Affine Grassmannians (Mirković-Vilonen, Ginzburg,...)

Geometric representation theory

In the late '90s and early '00s, there appeared on the scene two beautiful and remarkable contructions of the representations of a Lie group based on the geometry of two very different spaces:

■ Quiver varieties (Lusztig, Nakajima, Ginzburg,...)
■ Affine Grassmannians (Mirković-Vilonen, Ginzburg,...)

Each of these is worthy of a talk series in and of itself, but let me try to summarize the most important points.

Nakajima quiver varieties

Pick your favorite quiver (oriented graph), and let \mathfrak{g} be the Kac-Moody algebra for that quiver.

Attached to a highest weight λ and weight space $\mu=\lambda-\sum_{i} d_{i} \alpha_{i}$, we have a Nakajima quiver variety $\tilde{\mathfrak{Q}}_{\mu}^{\lambda}$. This is the moduli space of stable representations of the preprojective algebra for a quiver given by the Dynkin quiver with an extra vertex.

The dimension vector is indicated in orange.

Nakajima quiver varieties

Put another way: for a dimension vector \mathbf{d} we consider the representation.

$$
E_{\mathbf{d}}=\oplus_{i \rightarrow j} \operatorname{Hom}\left(\mathbb{C}^{d_{i}}, \mathbb{C}^{d_{j}}\right) \curvearrowleft \prod G_{\mathbf{d}}=\mathrm{GL}\left(\mathbb{C}^{d_{i}}\right)
$$

The quotient here would be the moduli space of representations of the quiver. We want to take its hyperkähler analogue:

$$
\tilde{\mathfrak{Q}}_{\mathbf{d}}^{\lambda}=\mu^{-1}(0) / /{ }_{\chi} G_{\mathbf{d}} \subset T^{*} E_{\mathbf{d}} / /{ }_{\chi} G_{\mathbf{d}} .
$$

This has a natural resolution of singularities $\pi_{\mathbf{d}}^{\lambda}: \tilde{\mathfrak{Q}}_{\mathbf{d}}^{\lambda} \rightarrow \mathfrak{Q}_{\mathbf{d}}^{\lambda}$, where $\mathfrak{Q}_{\mathbf{d}}^{\lambda}$ the categorical quotient or moduli space of semi-simple preprojective representations. This makes $\tilde{\mathfrak{Q}}_{\mathbf{d}}^{\lambda}$ a symplectic resolution.

Nakajima quiver varieties

We let $\tilde{\mathfrak{Q}}^{\lambda}=\bigsqcup \tilde{\mathfrak{Q}}_{\mathbf{d}}^{\lambda}$, and $\mathfrak{Q}^{\lambda}=\bigcup \mathfrak{Q}_{\mathbf{d}}^{\lambda}$ (the inclusion is by adding the trivial representation).

Theorem (Nakajima)

There is a geometrically defined action of $U(\mathfrak{g})$ on $H_{*}^{B M}\left(\tilde{\mathfrak{Q}}^{\lambda}\right)$ such that $H_{m i d}^{B M}\left(\tilde{\mathfrak{Q}}^{\lambda}\right) \cong V_{\lambda}$.

Nakajima quiver varieties

We let $\tilde{\mathfrak{Q}}^{\lambda}=\bigsqcup \tilde{\mathfrak{Q}}_{\mathbf{d}}^{\lambda}$, and $\mathfrak{Q}^{\lambda}=\bigcup \mathfrak{Q}_{\mathbf{d}}^{\lambda}$ (the inclusion is by adding the trivial representation).

Theorem (Nakajima)

There is a geometrically defined action of $U(\mathfrak{g})$ on $H_{*}^{B M}\left(\tilde{\mathfrak{Q}}^{\lambda}\right)$ such that $H_{m i d}^{B M}\left(\tilde{\mathfrak{Q}}^{\lambda}\right) \cong V_{\lambda}$.

Theorem (Kashiwara-Saito)

The components of $\left(\pi^{\lambda}\right)^{-1}(0)$ are in canonical bijection with the canonical basis of V_{λ}.

Nakajima quiver varieties

We let $\tilde{\mathfrak{Q}}^{\lambda}=\bigsqcup \tilde{\mathfrak{Q}}_{\mathbf{d}}^{\lambda}$, and $\mathfrak{Q}^{\lambda}=\bigcup \mathfrak{Q}_{\mathbf{d}}^{\lambda}$ (the inclusion is by adding the trivial representation).

Theorem (Nakajima)

There is a geometrically defined action of $U(\mathfrak{g})$ on $H_{*}^{B M}\left(\tilde{\mathfrak{Q}}^{\lambda}\right)$ such that $H_{m i d}^{B M}\left(\tilde{\mathfrak{Q}}^{\lambda}\right) \cong V_{\lambda}$.

Theorem (Kashiwara-Saito)

The components of $\left(\pi^{\lambda}\right)^{-1}(0)$ are in canonical bijection with the canonical basis of V_{λ}.

Unfortunately, the correspondence is a little more complicated than just sending the homology class of the component to the canonical basis vector. We live in an imperfect world.

Nakajima quiver varieties

These geometric results are actually hints toward a categorical one.

Nakajima quiver varieties

These geometric results are actually hints toward a categorical one.

Theorem (Zheng)

The category \mathcal{O} for the trivial action on $\tilde{\mathfrak{Q}}^{\lambda}$ is a categorification of V_{λ} i.e. $K^{0}\left(\mathcal{O}_{\tilde{\mathfrak{Q}}^{\lambda}}\right) \cong V_{\lambda}$ and there are functors \mathfrak{E}_{i} and \mathfrak{F}_{i} acting as the usual generators of $U_{q}(\mathfrak{g})$.

Nakajima quiver varieties

These geometric results are actually hints toward a categorical one.

Theorem (Zheng)

The category \mathcal{O} for the trivial action on $\tilde{\mathfrak{Q}}^{\lambda}$ is a categorification of V_{λ} i.e. $K^{0}\left(\mathcal{O}_{\tilde{\mathfrak{Q}}^{\lambda}}\right) \cong V_{\lambda}$ and there are functors \mathfrak{E}_{i} and \mathfrak{F}_{i} acting as the usual generators of $U_{q}(\mathfrak{g})$.

Recall that in my previous lecture, I defined a diagramatic algebra E^{λ} associated to \mathfrak{g} and λ called the quiver Hecke algebra.

Theorem (W)

The derived category $D^{b}\left(\mathcal{O}_{\tilde{\mathfrak{Q}}^{\lambda}}\right)$ carries an action of Khovanov and Lauda's 2-category categorifying $U_{q}(\mathfrak{g})$, and

$$
D^{b}\left(\mathcal{O}_{\tilde{\mathfrak{Q}}^{\lambda}}\right) \cong D^{b}\left(E^{\lambda}-\bmod \right) .
$$

Nakajima quiver varieties

We can also get tensor products by incorporating a \mathbb{C}^{*}-action into the picture. If $\lambda=\lambda_{1}+\cdots+\lambda_{n}$, we can partition our edges into groups corresponding to these weights, and act on the λ_{i} ones with weight i.

Nakajima quiver varieties

We can also get tensor products by incorporating a \mathbb{C}^{*}-action into the picture. If $\lambda=\lambda_{1}+\cdots+\lambda_{n}$, we can partition our edges into groups corresponding to these weights, and act on the λ_{i} ones with weight i.

$$
\begin{gathered}
\lambda=2 \omega_{1}+3 \omega_{2} \\
\lambda_{1}=\omega_{1}+2 \omega_{2} \\
\lambda_{2}=\omega_{1}+\omega_{2}
\end{gathered}
$$

Theorem (Zheng)

The category \mathcal{O} ㅅ for this \mathbb{C}^{*} action on $\tilde{\mathfrak{Q}}^{\lambda}$ is a categorification of $V_{\lambda_{1}} \otimes \cdots \otimes V_{\lambda_{n}}$.

Conjecture

$$
D^{b}(\mathcal{O} \underline{\boldsymbol{\lambda}}) \cong D^{b}(E \underline{\boldsymbol{\lambda}}-\bmod)
$$

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.

■ Let $G[[t]]$ be the Taylor series points of G.

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.

■ Let $G[[t]]$ be the Taylor series points of G.
■ Let $K=\left\{g \in G\left[t^{-1}\right] \mid g \equiv 1\left(\bmod t^{-1}\right)\right\}$ be the subgroup complementary to $G[[t]$.

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.

■ Let $G[[t]]$ be the Taylor series points of G.
■ Let $K=\left\{g \in G\left[t^{-1}\right] \mid g \equiv 1\left(\bmod t^{-1}\right)\right\}$ be the subgroup complementary to $G[[t]$.

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.

■ Let $G[[t]]$ be the Taylor series points of G.
■ Let $K=\left\{g \in G\left[t^{-1}\right] \mid g \equiv 1\left(\bmod t^{-1}\right)\right\}$ be the subgroup complementary to $G[[t]$.

The affine Grassmannian is the quotient $\mathrm{Gr}=G((t)) / G[[t]]$.

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.
\square Let $G[[t]]$ be the Taylor series points of G.
- Let $K=\left\{g \in G\left[t^{-1}\right] \mid g \equiv 1\left(\bmod t^{-1}\right)\right\}$ be the subgroup complementary to $G[[t]]$.

The affine Grassmannian is the quotient $\mathrm{Gr}=G((t)) / G[[t]]$.
The $G[[t]]$-orbits on Gr are indexed by dominant coweights of G. We let

$$
G_{\lambda}=G[[t]] \cdot t^{\lambda} \cdot G[[t]] \quad \operatorname{Gr}_{\lambda}=G_{\lambda} / G[[t]]
$$

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the representations of simple Lie groups.

- Let $G((t))$ be the Laurent series points of G.
\square Let $G[[t]]$ be the Taylor series points of G.
- Let $K=\left\{g \in G\left[t^{-1}\right] \mid g \equiv 1\left(\bmod t^{-1}\right)\right\}$ be the subgroup complementary to $G[[t]]$.

The affine Grassmannian is the quotient $\mathrm{Gr}=G((t)) / G[[t]]$.
The $G[[t]]$-orbits on Gr are indexed by dominant coweights of G. We let

$$
G_{\lambda}=G[[t]] \cdot t^{\lambda} \cdot G[[t]] \quad \operatorname{Gr}_{\lambda}=G_{\lambda} / G[[t]]
$$

For any sequence $\underline{\boldsymbol{\lambda}}$ of weights, we have a variety

$$
\operatorname{Gr}_{\underline{\boldsymbol{\lambda}}}=\overline{G_{\lambda_{1}}} \times_{G[[t]]} \cdots \times_{G[[t]]} \overline{G_{\lambda_{n}}} / G[[t]] \quad m_{\underline{\boldsymbol{\lambda}}}: \operatorname{Gr}_{\underline{\boldsymbol{\lambda}}} \rightarrow \overline{\operatorname{Gr}_{\lambda}}
$$

Affine Grassmannians and shifted Yangians

The varieties $\mathrm{Gr}_{\boldsymbol{\boldsymbol { \lambda }}}$ aren't symplectic, but they are a union of finitely many symplectic pieces (they're Poisson).

Affine Grassmannians and shifted Yangians

The varieties $\mathrm{Gr}_{\boldsymbol{\boldsymbol { \lambda }}}$ aren't symplectic, but they are a union of finitely many symplectic pieces (they're Poisson).

Given a sequence of coweights $\underline{\boldsymbol{\lambda}}$ and another coweight μ, we can look at $\mathfrak{W}_{\mu}^{\boldsymbol{\lambda}}=m_{\underline{\boldsymbol{\lambda}}}^{-1}(K \cdot \mu(t)) \subset \operatorname{Gr}_{\underline{\boldsymbol{\lambda}}}$.

Affine Grassmannians and shifted Yangians

The varieties $\mathrm{Gr}_{\boldsymbol{\lambda}}$ aren't symplectic, but they are a union of finitely many symplectic pieces (they're Poisson).

Given a sequence of coweights $\underline{\boldsymbol{\lambda}}$ and another coweight μ, we can look at $\mathfrak{W} \bar{\mu}^{\boldsymbol{\lambda}}=m_{\underline{\boldsymbol{\lambda}}}^{-1}(K \cdot \mu(t)) \subset \operatorname{Gr}_{\underline{\boldsymbol{\lambda}}}$.

Unlike the varieties we've talked about earlier, this isn't smooth. This creates problems for us if we want to talk about its Fukaya category, but we can still hope it has a nice deformation quantization.

Affine Grassmannians and shifted Yangians

The varieties $\mathrm{Gr}_{\boldsymbol{\lambda}}$ aren't symplectic, but they are a union of finitely many symplectic pieces (they're Poisson).

Given a sequence of coweights $\underline{\boldsymbol{\lambda}}$ and another coweight μ, we can look at $\mathfrak{W}_{\mu}^{\boldsymbol{\lambda}}=m_{\underline{\boldsymbol{\lambda}}}^{-1}(K \cdot \mu(t)) \subset \operatorname{Gr}_{\underline{\boldsymbol{\lambda}}}$.

Unlike the varieties we've talked about earlier, this isn't smooth. This creates problems for us if we want to talk about its Fukaya category, but we can still hope it has a nice deformation quantization.

The varieties $\mathfrak{W}_{\mu}^{\lambda}$ are just the closures of symplectic leaves of $K \cdot t^{\mu} \subset \mathrm{Gr}$, so really, we can quantize the whole thing, and then take quotients.

Affine Grassmannians and shifted Yangians

The varieties $\mathrm{Gr}_{\boldsymbol{\lambda}}$ aren't symplectic, but they are a union of finitely many symplectic pieces (they're Poisson).
Given a sequence of coweights $\underline{\boldsymbol{\lambda}}$ and another coweight μ, we can look at $\mathfrak{W} \overline{\boldsymbol{\lambda}}^{\boldsymbol{\lambda}}=m_{\underline{\boldsymbol{\lambda}}}^{-1}(K \cdot \mu(t)) \subset \operatorname{Gr}_{\underline{\boldsymbol{\lambda}}}$.

Unlike the varieties we've talked about earlier, this isn't smooth. This creates problems for us if we want to talk about its Fukaya category, but we can still hope it has a nice deformation quantization.

The varieties $\mathfrak{W}_{\mu}^{\lambda}$ are just the closures of symplectic leaves of $K \cdot t^{\mu} \subset \mathrm{Gr}$, so really, we can quantize the whole thing, and then take quotients.

Conjecture

The shifted Yangian $Y_{\mu}(\mathfrak{g})$ is a deformation quantization of $K \cdot \mu(t)$. Category \mathcal{O} for a quotient $Y_{\bar{\mu}}^{\boldsymbol{\lambda}}(\mathfrak{g})$ will be a block of the category $\mathfrak{V} \boldsymbol{\lambda}$ I defined in my talk yesterday.

Affine Grassmannians and quiver varieties

To try and convince you that this is not an insane suggestion, let me try to marshal my evidence that $\mathfrak{W}_{\mu}^{\lambda}$ and $\mathfrak{Q}_{\mu}^{\lambda}$ are dual.

Affine Grassmannians and quiver varieties

To try and convince you that this is not an insane suggestion, let me try to marshal my evidence that $\mathfrak{W}_{\mu}^{\lambda}$ and $\mathfrak{Q}_{\mu}^{\lambda}$ are dual.

- The strata are in bijection: in both cases they are given by the poset of weights $\mu \leq \nu \leq \lambda$, with the quiver variety taking these in opposite order.

Affine Grassmannians and quiver varieties

To try and convince you that this is not an insane suggestion, let me try to marshal my evidence that $\mathfrak{W}_{\mu}^{\lambda}$ and $\mathfrak{Q}_{\mu}^{\lambda}$ are dual.

- The strata are in bijection: in both cases they are given by the poset of weights $\mu \leq \nu \leq \lambda$, with the quiver variety taking these in opposite order.

■ This duality is "functorial" for slices and strata (i.e., taking a slice or stratum corresponding to ν just replaces λ or μ with ν).

Affine Grassmannians and quiver varieties

To try and convince you that this is not an insane suggestion, let me try to marshal my evidence that $\mathfrak{W}_{\mu}^{\lambda}$ and $\mathfrak{Q}_{\mu}^{\lambda}$ are dual.

- The strata are in bijection: in both cases they are given by the poset of weights $\mu \leq \nu \leq \lambda$, with the quiver variety taking these in opposite order.

■ This duality is "functorial" for slices and strata (i.e., taking a slice or stratum corresponding to ν just replaces λ or μ with ν).
■ There is a resolution of $\mathfrak{Q}_{\mu}^{\lambda}$ and a \mathbb{C}^{*}-action on $\mathfrak{W}_{\mu}^{\lambda}$ (just given by ρ^{\vee}), such that core components of $\tilde{\mathfrak{Q}}_{\mu}^{\lambda}$ and MV cycles of $\mathfrak{W}_{\mu}^{\lambda}$ are in canonical bijection with the canonical basis of V_{λ}

Affine Grassmannians and quiver varieties

To try and convince you that this is not an insane suggestion, let me try to marshal my evidence that $\mathfrak{W}_{\mu}^{\lambda}$ and $\mathfrak{Q}_{\mu}^{\lambda}$ are dual.

- The strata are in bijection: in both cases they are given by the poset of weights $\mu \leq \nu \leq \lambda$, with the quiver variety taking these in opposite order.

■ This duality is "functorial" for slices and strata (i.e., taking a slice or stratum corresponding to ν just replaces λ or μ with ν).
■ There is a resolution of $\mathfrak{Q}_{\mu}^{\lambda}$ and a \mathbb{C}^{*}-action on $\mathfrak{W}_{\mu}^{\lambda}$ (just given by ρ^{\vee}), such that core components of $\tilde{\mathfrak{Q}}_{\mu}^{\lambda}$ and MV cycles of $\mathfrak{W}_{\mu}^{\lambda}$ are in canonical bijection with the canonical basis of V_{λ}

- If one takes a \mathbb{C}^{*} action on $\mathfrak{Q}_{\mu}^{\lambda}$ for $\underline{\boldsymbol{\lambda}}$, and a partial resolution $\mathfrak{W}_{\mu}^{\boldsymbol{\lambda}}$ of $\mathfrak{W}_{\mu}^{\lambda}$, components of the flow-in varieties (interpreted carefully) now are in bijection with the canonical basis of the tensor product $V_{\underline{\boldsymbol{\lambda}}}=V_{\lambda_{1}} \otimes \cdots \otimes V_{\lambda_{\ell}}$.

Knot homology

So, if you believe me that the categories for symplectic dual manifolds are equivalent, this means that the knot homology construction I discussed yesterday should also have an affine Grassmannian interpretation.

I mentioned yesterday that the braiding functors seemed rather non-geometric in the quiver variety context, whereas the $U_{q}(\mathfrak{g})$ functors were very geometric. In the affine Grassmannian picture, these should reverse.

Knot homology

So, if you believe me that the categories for symplectic dual manifolds are equivalent, this means that the knot homology construction I discussed yesterday should also have an affine Grassmannian interpretation.

I mentioned yesterday that the braiding functors seemed rather non-geometric in the quiver variety context, whereas the $U_{q}(\mathfrak{g})$ functors were very geometric. In the affine Grassmannian picture, these should reverse.

One can see a hint of where the braiding should come from: $\overline{\mathrm{Gr}_{\lambda}}$ is the special fiber of a family over the configuration space of ℓ-points in \mathbb{C}, where the general fiber is $\Pi \overline{\mathrm{Gr}_{\lambda_{i}}}$ (coming from the Beilinson-Drinfeld Grassmannian) so the braiding functors are almost certainly related to monodromy in this family.

Knot homology

We know how categorify knot invariants attached to the standard representation of $\mathfrak{s l}_{n}$ in two very different ways,

Knot homology

We know how categorify knot invariants attached to the standard representation of $\mathfrak{s l}_{n}$ in two very different ways,

■ using \mathcal{D}-modules on partial flag varieties (Stroppel-Mazorchuk, Sussan); this is the quiver varieties picture.

Knot homology

We know how categorify knot invariants attached to the standard representation of $\mathfrak{s l}_{n}$ in two very different ways,

■ using \mathcal{D}-modules on partial flag varieties (Stroppel-Mazorchuk, Sussan); this is the quiver varieties picture.

- using the Fukaya category of the resolved slice \tilde{S}_{λ} to certain nilpotent orbits $G L_{n} \cdot e_{\lambda}$ (Seidel-Smith, Manolescu); this is (secretly) the affine Grassmannian picture.

Knot homology

We know how categorify knot invariants attached to the standard representation of $\mathfrak{s l}_{n}$ in two very different ways,

■ using \mathcal{D}-modules on partial flag varieties (Stroppel-Mazorchuk, Sussan); this is the quiver varieties picture.

- using the Fukaya category of the resolved slice \tilde{S}_{λ} to certain nilpotent orbits $G L_{n} \cdot e_{\lambda}$ (Seidel-Smith, Manolescu); this is (secretly) the affine Grassmannian picture.

Knot homology

We know how categorify knot invariants attached to the standard representation of $\mathfrak{s l}_{n}$ in two very different ways,

■ using \mathcal{D}-modules on partial flag varieties (Stroppel-Mazorchuk, Sussan); this is the quiver varieties picture.

- using the Fukaya category of the resolved slice $\tilde{\mathcal{S}}_{\lambda}$ to certain nilpotent orbits $G L_{n} \cdot e_{\lambda}$ (Seidel-Smith, Manolescu); this is (secretly) the affine Grassmannian picture.

The varieties $T^{*} G L_{n} / P_{t_{\lambda}}$ and \tilde{S}_{λ} are related by S-duality.
Thus, S-duality gives a general framework that includes this coincidence of knot invariants.

Future goals

■ Find the true statements which lie behind all these conjectures.

