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Hyperplanes arrangements and a mysterious algebra Definitions

Hyperplane arrangements

Let’s start with a little notation.

A polarized arrangement V = (V, ξ, ν) is

1 A subspace V ⊂ Rn.

2 An element ξ ∈ Rn/V (a coset
V + ξ ⊂ Rn).

3 An element ν ∈ V∗ (a direction in V).

We’ll always assume that this choice is generic.

This picture above is of V + ξ. The hyperplanes in the arrangement are the
vanishing sets of ti|V+ξ (where the ti are the coordinates on Rn).

The chambers of V are the connected components of (V + ξ) ∩ (R×)n.

We call a chamber bounded if ν achieves a maximum on it. We let B denote
the set of bounded chambers.
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Hyperplanes arrangements and a mysterious algebra Definitions

A mysterious algebra

From such an arrangement, one can build an algebra A(V) over Sym•(V∗),
generated by elements

cAB for all chambers A,B which are adjacent across a single hyperplane.

idempotents eA for all chambers A.

the coordinate functions ti on Rn, pulled back to V .

with the relations

cABeB′ = cABδ
B′
B and

eA′cAB = cABδ
A′
A .

cABcBD = cAB′cB′D.

B′
______

�
�
�
�
�
�

A B

D
��

=
B

______

�
�
�
�
�
�

A

B′ D//

eA = 0 if A is not bounded.

cABcBA = tieA.

�
�
�
�
�
�

A B
vv

i

= tieA
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Hyperplanes arrangements and a mysterious algebra A surprising amount of structure

Good properties

Despite its mysterious origins, this algebra is quite well behaved.

Definition
An algebra A quasi-hereditary if it has an exceptional collection of standard
modules which generate A−mod (like Verma modules in category O).

A positively graded algebra A = A0 ⊕ A>0 Koszul if the two natural gradings
on A? = Ext∗A(A0,A0) agree. A? is called the Koszul dual of A.

There’s an equivalence of derived categories D(A−gmod) ∼= D(A?−gmod).

Theorem (BLPW)

A(V) is quasi-hereditary.

A(V) is Koszul.

The center Z(A(V)) is the reduced Stanley-Reisner ring of Rn → V∗.
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Hyperplanes arrangements and a mysterious algebra A surprising amount of structure

Examples

A few of these are algebras you might have heard of before:

If
V = {x ∈ Rn|

∑
i

xi = 0},

then the hyperplane arrangement is the faces of a n− 1-simplex, and the
associated category is the block of category O for sln including the
simple Lmω1−ρ (this is also a certain category of representations for the
Cherednik algebra of Zn).

If V = span (1, . . . , 1), then the hyperplane arrangement is n points on a
line, and the associated category is a regular block of parabolic category
Op for sln, where p is the parabolic preserving a line.

Note: these are Koszul dual!
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Hyperplanes arrangements and a mysterious algebra A surprising amount of structure

Gale duality

There’s a natural duality on the set of polarized hyperplane arrangements:

V = (V ⊂ Rn, ξ, ν) ks +3 V∨ = (V⊥ ⊂ Rn,−ν,−ξ)

This correspondence is surprisingly hard to visualize, so here are some simple
examples

1 2 3

ν

1 2 3

ν = 0

1 2 3

ν

23

1

−ξ

23

1

−ξ

2
3

1

−ξ

Theorem (BLPW)

(A(V))? ∼= A(V∨)
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Hyperplanes arrangements and a mysterious algebra A surprising amount of structure

Derived equivalences

The fact that our result depends on the parameters ξ and ν is a bit
dissatisfying. How can we compare the algebras for V and V ′ = (V, ξ′, ν ′)?

Theorem (BLPW)

As along as all parameters are generic, we have an equivalence of derived
categories D(A(V)) ∼= D(A(V ′)), even though the algebras A(V) and A(V ′)
are generally not Morita equivalent.

These isomorphisms are not canonical at all. In fact, they seem to only be
unique up to an action of π1(PolC(V)), the complexification of the spaces of
choices of generic polarization of V .

PolC(V) is the complment of a new hyperplane arrangement called the
doubled secondary arrangement.
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Hyperplanes arrangements and a mysterious algebra A surprising amount of structure

Why?

So, these algebras have a really shocking amount of structure for some
random relations we wrote down. What could possibly explain this?

If there are any experts in the audience on the Bernstein-Gelfand-Gelfand
category Og, you might have noticed that the results above sound an awful lot
like ones about Og.

One answer
Both categories can be realized as A-branes on a symplectic variety X
(actually one that resolves a cone)!

If you’re an algebraist: an A-brane is a representation of a deformation
quantization of functions on X.
If you’re a symplectic geometer: an A-brane is an object in the Fukaya
category of X. (Just for motivation!)
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Symplectic cones Definitions

Symplectic cones

When I say “symplectic,” I mean algebraically symplectic with a C-valued
holomorphic 2-form ω.

From the perspective of a R-symplectic geometer, <(ω) and =(ω) are two
symplectic forms, related by the complex structure. In all cases we’ll discuss,
these are actually 2/3 of a hyperkähler structure.

Algebraic symplectic implies Calabi-Yau, so it is very restrictive.

We’ll be interested in a smooth symplectic variety X̃ which is a resolution of
an affine cone X (i.e. X is an affine variety invariant under scaling). In this
case, we say X̃ is a symplectic resolution.
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Symplectic cones Examples

Nilpotent cones

Let Ng be the cone of nilpotent elements in a complex Lie algebra g.

There’s a symplectic resolution of singularities, the Springer resolution

{(n, b)|n ∈ N , b a Borel, n ∈ b} = Ñ ∼= T∗G/B→ N}.

As a cotangent bundle, T∗G/B has a natural symplectic form.

The universal enveloping algebra of g is a deformation quantization of N , so
the BGG category O obviously fits into the algebraic definition of A-branes I
gave. For the geometric one, this is trickier, but a theorem:

Theorem (Beilinson-Bernstein, Nadler-Zaslow)

There is in an inclusion (Og)0 ↪→ Fuk(T∗G/B).
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Symplectic cones Examples

Hypertoric varieties

What symplectic cone corresponds to a hyperplane arrangement? If V is
defined over Z, then C⊗R V⊥ is the Lie algebra of a subtorus T ⊂ (C∗)n. As
always, we have a canonical moment map µ : T∗Cn → t∗.

Let X//αG denote the GIT quotient of a variety X for the character α.

One can do a symplectic reduction in the algebraic category

Mα = µ−1(0)//αT =
⊔
v∈V

N∗(T · v)//αT

and obtain a hypertoric variety, closely tied to the combinatorics of T acting
on V . For α = 0 this is an cone, and for α generic, a symplectic resolution of
M0. (You might prefer to think of this as a hyperkähler reduction).

You can think of this as an “enhanced cotangent bundle” to the toric variety
Cn//αT .
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Symplectic cones Examples

Hypertoric varieties and hyperplane arrangements

Our original data can be recovered as the affine hyperplane arrangement
(ker ι, α,−) where ι : Rn → t∗R is the natural map.

�����������������������������

Proposition

Each toric variety XC corresponding to a chamber C in the complement of the
Hi’s is a Lagrangian subvariety of Mα, and Mα is a symplectic plumbing of
their cotangent bundles.
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Symplectic cones Examples

A(V) and geometry

The category A(V)−mod for a polarized arrangement V = (V, ξ, ν) has a
geometric interpretation similar to that of Og.

Theorem (BLPW)

A(V)−mod has a full and faithful inclusion into the category of
representations of a deformation quantization MV of Mξ, with its image
described by conditions similar to (Og)0.

The algebra MV can be constructed by non-commutative Hamiltonian
reduction of the algebra of differential operators DCn by T , and analyzed
explicitly.

This deformation quantization of MV can be regarded as an analogue of the
universal enveloping algebra, and one can search for analogues of all results
of Lie theory. But that’s another talk.
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Symplectic cones Deformation quantizations

Deformation quantization

I believe that what I’ve told you thus far is just a hint of a much larger picture
incorporating many more symplectic varieties. Let X̃ is a smooth symplectic
variety which is a resolution of singularities of an affine cone X.

In order to do this we should develop some tools for producing these
categories of “A-branes.” The best tool for this is deformation quantization.

Proposition (Bezrukavnikov-Kaledin)

There is a universal family AλX of deformation quantizations of X over H2(X̃).
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Symplectic cones Deformation quantizations

Examples

Some pretty interesting algebras show up when we do this. A couple of them
are quite familiar, but it also gives us some new algebras which we can think
of as analogues.

nilcone: Ng
ks +3 universal enveloping algebra: U(g)

symmetric power: Symn(C2) ks +3 rational Cherednik algebra Uc for Sn

affine Grassmannian slice: Wλ
µ

?ks +3 primitive quotient of shifted Yangian

quiver variety: Qλ
µ

ks +3

here be dragonŊ
hypertoric variety: MA ks +3

“Dragons” is a slight exaggeration; we know what the algebras are, but as far
as I know, there is no literature on them.
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Symplectic cones Deformation quantizations

Category O

For any symplectic cone with a Hamiltonian C∗-action, we have a class of
categories of modules over the deformation quantization, which we can think
of as analogues of Og.

If you’re an algebraist, you’ll take modules locally finite for the action of
the non-negative weight subalgebra for this C∗-action.

If you’re a symplectic geometer, you’ll take branes with particular
“conditions at∞” determined by the C∗-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian C∗-action (with
suitable hypotheses), category O is Koszul, quasi-hereditary, and up to
derived equivalence, depends only on the fixed points of the C∗-action.

But what about the Koszul duality results? How can we generalize the
relationship between Gale dual hypertoric varieties?

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 18 / 40



Symplectic cones Deformation quantizations

Category O

For any symplectic cone with a Hamiltonian C∗-action, we have a class of
categories of modules over the deformation quantization, which we can think
of as analogues of Og.

If you’re an algebraist, you’ll take modules locally finite for the action of
the non-negative weight subalgebra for this C∗-action.

If you’re a symplectic geometer, you’ll take branes with particular
“conditions at∞” determined by the C∗-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian C∗-action (with
suitable hypotheses), category O is Koszul, quasi-hereditary, and up to
derived equivalence, depends only on the fixed points of the C∗-action.

But what about the Koszul duality results? How can we generalize the
relationship between Gale dual hypertoric varieties?

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 18 / 40



Symplectic cones Deformation quantizations

Category O

For any symplectic cone with a Hamiltonian C∗-action, we have a class of
categories of modules over the deformation quantization, which we can think
of as analogues of Og.

If you’re an algebraist, you’ll take modules locally finite for the action of
the non-negative weight subalgebra for this C∗-action.

If you’re a symplectic geometer, you’ll take branes with particular
“conditions at∞” determined by the C∗-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian C∗-action (with
suitable hypotheses), category O is Koszul, quasi-hereditary, and up to
derived equivalence, depends only on the fixed points of the C∗-action.

But what about the Koszul duality results? How can we generalize the
relationship between Gale dual hypertoric varieties?

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 18 / 40



Symplectic cones Deformation quantizations

Category O

For any symplectic cone with a Hamiltonian C∗-action, we have a class of
categories of modules over the deformation quantization, which we can think
of as analogues of Og.

If you’re an algebraist, you’ll take modules locally finite for the action of
the non-negative weight subalgebra for this C∗-action.

If you’re a symplectic geometer, you’ll take branes with particular
“conditions at∞” determined by the C∗-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian C∗-action (with
suitable hypotheses), category O is Koszul, quasi-hereditary, and up to
derived equivalence, depends only on the fixed points of the C∗-action.

But what about the Koszul duality results? How can we generalize the
relationship between Gale dual hypertoric varieties?

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 18 / 40



Symplectic cones Deformation quantizations

Category O

For any symplectic cone with a Hamiltonian C∗-action, we have a class of
categories of modules over the deformation quantization, which we can think
of as analogues of Og.

If you’re an algebraist, you’ll take modules locally finite for the action of
the non-negative weight subalgebra for this C∗-action.

If you’re a symplectic geometer, you’ll take branes with particular
“conditions at∞” determined by the C∗-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian C∗-action (with
suitable hypotheses), category O is Koszul, quasi-hereditary, and up to
derived equivalence, depends only on the fixed points of the C∗-action.

But what about the Koszul duality results? How can we generalize the
relationship between Gale dual hypertoric varieties?

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 18 / 40



Symplectic cones Deformation quantizations

Category O

For any symplectic cone with a Hamiltonian C∗-action, we have a class of
categories of modules over the deformation quantization, which we can think
of as analogues of Og.

If you’re an algebraist, you’ll take modules locally finite for the action of
the non-negative weight subalgebra for this C∗-action.

If you’re a symplectic geometer, you’ll take branes with particular
“conditions at∞” determined by the C∗-action.

Conjecture (Too optimistic)

For each symplectic resolution of a cone with a Hamiltonian C∗-action (with
suitable hypotheses), category O is Koszul, quasi-hereditary, and up to
derived equivalence, depends only on the fixed points of the C∗-action.

But what about the Koszul duality results? How can we generalize the
relationship between Gale dual hypertoric varieties?

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 18 / 40



Duality

S-duality
Based on various pieces of evidence, Braden, Licata, Proudfoot and I have
suggested that this should reflect some kind of underlying duality X ↔ X∨

between symplectic cones. My collaborators originally dubbed this
“symplectic duality” but it seems that for talking with physicists in the
audience, the name should be shortened to “S-duality.”

Conjecture

Category O’s attached to dual cones are Koszul dual (using a correspondence
between C∗-actions on one side and resolutions on the other).

That is, we have a canonical isomorphism K0(OX) ∼= K0(OX∨), so these
really categorify the same thing, but often one feature of the category is more
visible on one side than the other.

Observation
Our examples coincide with a notion of duality in physics; they are the Higgs
branches of mirror dual 3-dimensional gauge theories.
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Duality

Examples of duality

So here’s the list of symplectic cones thus far that we believe we have found
the dual to:

hypertoric variety: MA ks +3 Gale dual: MA∨

nilcone: Ng
ks +3 Langlands dual: NLg

symmetric power: Symn(C2) ks +3 symmetric power: Symn(C2)

GI-instantons on C̃2/ΓJ ks +3 GJ-instantons on C̃2/ΓI

ΓI GIooMcKay//

quiver variety: Qλ
µ

ks +3 affine Grass. slice: Wλ
µ

Simplest interesting example: T∗Pn−1 ⇔ C̃2/Zn or, in terms of cones,
M rk 1

n×n ⇔ C2/Zn.
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Duality Geometry

S-duality

While the representation theoretic interpretation of duality is probably the
most exciting, there are other, more geometric interpretations as well.

Conjecture

The spaces X̃ and X̃∨ carry actions of tori S and T such that the fixed points
X̃S and (X̃∨)T are in natural bijection.

For hypertoric varieties, the set of hyperplanes going through a fixed
point are the complement of the set going through a fixed point in the
dual.

For Hilb(C2), this is taking transpose of partitions.

For Langlands dual flag varieties, this the bijection between the Weyl
groups.

For physicists, this seems to be the fact that fixed points are "supersymmetric
vacua."
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Duality Geometry

S-duality

Furthermore, we expect a relation between the strata of the cones X and X∨

Conjecture

The spaces X and X∨ carry canonical stratifications such that the strata are in
order-reversing bijection.

For hypertoric varieties, this is taking complements of coloop-free flats.

For nilpotent matrices, this is taking transpose of Jordan type.

For general nilcones. . . the numbers don’t match up.

We seem to have to
restrict to certain “special” nilpotent orbits to get a bijection.

For physicists, these seem to come from the other branches of the moduli
space of vacua.

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 22 / 40
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Duality Geometry

S-duality

We also expect a kind of recursion (or perhaps you could call it functoriality)

Conjecture

If the strata Xα and X∨α∨ match under this bijection, then Xα is S-dual to the
slice to X∨α∨ in X∨

For hypertoric varieties, this is the compatibility of Gale duality with
restriction and localization.

For nilpotent matrices and spaces of An instantons, there is good
evidence for this (some of it coming from physics).
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Duality Geometry

S-duality

Unfortunately, at the moment, we’ve only been able to work out various
examples “by hand,” but I feel the signs are encouraging. Not to mention that
a lot of beautiful geometry, representation theory and combinatorics show up
in the working of the examples.

Intermission!
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Duality Cells and strata

Flow-in cells

Let we now try to give you some slightly more precise geometry:

I’ll assume for now that we have a torus T with a fixed choice of C∗ ↪→ T ,
acting with isolated fixed points on X̃, which is a symplectic resolution of a
cone X π←− X̃.

For each x ∈ XT , I have the Lagrangian flow-in cell

Fx = {y ∈ X| lim
t→0

t · y = x}.

Conjecture

If Xα is the smallest “special” stratum containing π(Fx), then X∨α∨ is the
smallest “special” stratum containing π(Fx∨)
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Duality Cells and strata

Flow-in cells

For a taste of what this says: the generic stratum and 0 stratum must switch
under ∨, so this says Fx ⊂ π−1(0) iff Fx∨ isn’t contained in any smaller
stratum.

That is, duality switches core components (components of π−1(0)) and MV
cycles (components of the flow-in of the identity in X∨).

A similar, but more complex phenomenon seems to hold for the intermediate
strata: now we obtain an MV cycle in Xα and a core component of the
resolution of the slice, which switch under duality.

This should be thought of as a generalization of the cell theory of category O,
which is what we obtain in the case of the flag variety.
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Duality Localization duality

Equivariant cohomology of X̃

Now, assume X̃ is equivariantly formal. That is, we have an injection

H∗T(X̃)→ H∗T(X̃T) ∼= ⊕a∈X̃T HT({a}).

Let RX̃ be the subring of H∗T(X̃) generated by H2
T over H0

T . More
geometrically, we have

Spec RX̃ =
⋃

a∈X̃T

HT
2 ({a}) ⊂ HT

2 (X̃).

That is, all information about RX̃ is encoded in this subspace arrangement.

There is an obvious “duality” on subspace arrangements, sending all
subspaces to their annihilator. Let

R∨X̃ = C
[ ⋃

a∈X̃T

HT
2 ({a})⊥

]
⊂ HT

2 (X̃)∗.
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Duality Localization duality

Examples

To keep up with our running examples:

Variety X̃ Spec R Duality

T∗G/B
⋃

w∈W Γw ⊂ t∗ ⊕ t∗ Langlands

MV
⋃
β a basis of V∗ Cβ ⊂ Cn Gale

Hilbn(C2)
⋃
λan(1,Con(λ)) ⊂ C2 self-dual

Observation (Goresky-MacPherson, BLPW)

For all the examples above where the natural torus action has isolated fixed
points, the “symplectic dual” X̃∨ also has an action of a torus S such that

R∨X̃ = RX̃∨ .
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Duality Localization duality

Localization duality for Koszul algebras

Interestingly, the same phenomenon holds for a general class of Koszul
algebras, independent of any connection to geometry.

Any Koszul algebra A over an algebraically closed field k has a canonical flat
deformation À over Z(A?)2 the degree 2 part of the center of the dual A?.

Assume that A is quasi-hereditary, and the center Z(À) is also flat.

Let RA be the subalgebra of Z(À) generated by Z(À)2. As before,
Spec RA ⊂ Z(À?) is a union of subspaces. Let R∨A be the coordinate ring of the
union of the annihilators.
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Quiver varieties and affine Grassmannians

Geometric representation theory

In the late ’90s and early ’00s, there appeared on the scene two beautiful and
remarkable contructions of the representations of a Lie group based on the
geometry of two very different spaces:

Quiver varieties (Lusztig, Nakajima, Ginzburg,. . . )

Affine Grassmannians (Mirković-Vilonen, Ginzburg,. . . )

Each of these is worthy of a talk series in and of itself, but let me try to
summarize the most important points.
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Quiver varieties and affine Grassmannians Quiver varities

Nakajima quiver varieties

Pick your favorite quiver (oriented graph), and let g be the Kac-Moody
algebra for that quiver.

Attached to a highest weight λ and weight space µ = λ−
∑

i diαi, we have a
Nakajima quiver variety Q̃λ

µ. This is the moduli space of stable
representations of the preprojective algebra for a quiver given by the Dynkin
quiver with an extra vertex.

λ = 2ω1 + 3ω2

〈ω2, λ− µ〉〈ω1, λ− µ〉

1

The dimension vector is indicated in orange.
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Quiver varieties and affine Grassmannians Quiver varities

Nakajima quiver varieties

Put another way: for a dimension vector d we consider the representation.

Ed = ⊕i→jHom(Cdi ,Cdj)
∏

Gd = GL(Cdi)

The quotient here would be the moduli space of representations of the quiver.
We want to take its hyperkähler analogue:

Q̃λ
d = µ−1(0) �χ Gd ⊂ T∗Ed �χ Gd.

This has a natural resolution of singularities πλd : Q̃λ
d → Qλ

d , where Qλ
d the

categorical quotient or moduli space of semi-simple preprojective
representations. This makes Q̃λ

d a symplectic resolution.
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Quiver varieties and affine Grassmannians Quiver varities

Nakajima quiver varieties

We let Q̃λ =
⊔

Q̃λ
d , and Qλ =

⋃
Qλ

d (the inclusion is by adding the trivial
representation).

Theorem (Nakajima)

There is a geometrically defined action of U(g) on HBM
∗ (Q̃λ) such that

HBM
mid(Q̃λ) ∼= Vλ.

Theorem (Kashiwara-Saito)

The components of (πλ)−1(0) are in canonical bijection with the canonical
basis of Vλ.

Unfortunately, the correspondence is a little more complicated than just
sending the homology class of the component to the canonical basis vector.
We live in an imperfect world.
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Quiver varieties and affine Grassmannians Quiver varities

Nakajima quiver varieties

These geometric results are actually hints toward a categorical one.

Theorem (Zheng)

The category O for the trivial action on Q̃λ is a categorification of Vλ i.e.
K0(OQ̃λ) ∼= Vλ and there are functors Ei and Fi acting as the usual
generators of Uq(g).

Recall that in my previous lecture, I defined a diagramatic algebra Eλ

associated to g and λ called the quiver Hecke algebra.

Theorem (W)

The derived category Db(OQ̃λ) carries an action of Khovanov and Lauda’s
2-category categorifying Uq(g), and

Db(OQ̃λ) ∼= Db(Eλ -mod).
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Quiver varieties and affine Grassmannians Quiver varities

Nakajima quiver varieties

We can also get tensor products by incorporating a C∗-action into the picture.
If λ = λ1 + · · ·+ λn, we can partition our edges into groups corresponding to
these weights, and act on the λi ones with weight i.

λ = 2ω1 + 3ω2
λ1 = ω1 + 2ω2
λ2 = ω1 + ω2

Theorem (Zheng)

The category Oλ for this C∗ action on Q̃λ is a categorification of
Vλ1 ⊗ · · · ⊗ Vλn .

Conjecture

Db(Oλ) ∼= Db(Eλ -mod)
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Quiver varieties and affine Grassmannians Affine Grassmannians

The affine Grassmannian

There is another class of varieties whose geometry is closely tied with the
representations of simple Lie groups.

Let G((t)) be the Laurent series points of G.

Let G[[t]] be the Taylor series points of G.

Let K = {g ∈ G[t−1]|g ≡ 1 (mod t−1)} be the subgroup
complementary to G[[t]].

The affine Grassmannian is the quotient Gr = G((t))/G[[t]].

The G[[t]]-orbits on Gr are indexed by dominant coweights of G. We let

Gλ = G[[t]] · tλ · G[[t]] Grλ = Gλ/G[[t]].

For any sequence λ of weights, we have a variety

Grλ = Gλ1 ×G[[t]] · · · ×G[[t]] Gλn/G[[t]] mλ : Grλ → Grλ
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Quiver varieties and affine Grassmannians Affine Grassmannians

Affine Grassmannians and shifted Yangians

The varieties Grλ aren’t symplectic, but they are a union of finitely many
symplectic pieces (they’re Poisson).

Given a sequence of coweights λ and another coweight µ, we can look at
W

λ
µ = m−1

λ (K · µ(t)) ⊂ Grλ.

Unlike the varieties we’ve talked about earlier, this isn’t smooth. This creates
problems for us if we want to talk about its Fukaya category, but we can still
hope it has a nice deformation quantization.

The varieties Wλ
µ are just the closures of symplectic leaves of K · tµ ⊂ Gr, so

really, we can quantize the whole thing, and then take quotients.

Conjecture

The shifted Yangian Yµ(g) is a deformation quantization of K · µ(t). Category
O for a quotient Yλ

µ (g) will be a block of the category Vλ I defined in my talk
yesterday.
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Quiver varieties and affine Grassmannians Affine Grassmannians

Affine Grassmannians and quiver varieties

To try and convince you that this is not an insane suggestion, let me try to
marshal my evidence that Wλ

µ and Qλ
µ are dual.

The strata are in bijection: in both cases they are given by the poset of
weights µ ≤ ν ≤ λ, with the quiver variety taking these in opposite
order.

This duality is “functorial” for slices and strata (i.e., taking a slice or
stratum corresponding to ν just replaces λ or µ with ν).

There is a resolution of Qλ
µ and a C∗-action on Wλ

µ (just given by ρ∨),
such that core components of Q̃λ

µ and MV cycles of Wλ
µ are in canonical

bijection with the canonical basis of Vλ
If one takes a C∗ action on Qλ

µ for λ, and a partial resolution W
λ
µ of Wλ

µ,
components of the flow-in varieties (interpreted carefully) now are in
bijection with the canonical basis of the tensor product
Vλ = Vλ1 ⊗ · · · ⊗ Vλ` .
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µ and MV cycles of Wλ
µ are in canonical

bijection with the canonical basis of Vλ
If one takes a C∗ action on Qλ

µ for λ, and a partial resolution W
λ
µ of Wλ

µ,
components of the flow-in varieties (interpreted carefully) now are in
bijection with the canonical basis of the tensor product
Vλ = Vλ1 ⊗ · · · ⊗ Vλ` .
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Knot homology

So, if you believe me that the categories for symplectic dual manifolds are
equivalent, this means that the knot homology construction I discussed
yesterday should also have an affine Grassmannian interpretation.

I mentioned yesterday that the braiding functors seemed rather non-geometric
in the quiver variety context, whereas the Uq(g) functors were very geometric.
In the affine Grassmannian picture, these should reverse.

One can see a hint of where the braiding should come from: Grλ is the special
fiber of a family over the configuration space of `-points in C, where the
general fiber is

∏
Grλi (coming from the Beilinson-Drinfeld Grassmannian)

so the braiding functors are almost certainly related to monodromy in this
family.

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 39 / 40



Quiver varieties and affine Grassmannians Knot homology

Knot homology

So, if you believe me that the categories for symplectic dual manifolds are
equivalent, this means that the knot homology construction I discussed
yesterday should also have an affine Grassmannian interpretation.

I mentioned yesterday that the braiding functors seemed rather non-geometric
in the quiver variety context, whereas the Uq(g) functors were very geometric.
In the affine Grassmannian picture, these should reverse.

One can see a hint of where the braiding should come from: Grλ is the special
fiber of a family over the configuration space of `-points in C, where the
general fiber is

∏
Grλi (coming from the Beilinson-Drinfeld Grassmannian)

so the braiding functors are almost certainly related to monodromy in this
family.

Ben Webster (MIT/Oregon) Strange duality February 11, 2010 39 / 40



Quiver varieties and affine Grassmannians Knot homology

Knot homology

We know how categorify knot invariants attached to the standard
representation of sln in two very different ways,

using D-modules on partial flag varieties (Stroppel-Mazorchuk, Sussan);
this is the quiver varieties picture.

using the Fukaya category of the resolved slice S̃λ to certain nilpotent
orbits GLn · eλ (Seidel-Smith, Manolescu); this is (secretly) the affine
Grassmannian picture.

The varieties T∗GLn/Ptλ and S̃λ are related by S-duality.

Thus, S-duality gives a general framework that includes this coincidence of
knot invariants.
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Future goals

Find the true statements which lie behind all these conjectures.
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