Classifying complex surfaces and symplectic 4-manifolds

Classifying complex surfaces and symplectic 4-manifolds

Tim Perutz

UT Austin, September 18, 2012 First Cut Seminar

Tim Perutz Classifying complex surfaces and symplectic 4-manifolds

Classifying complex surfaces and symplectic 4-manifolds Basics

Symplectic 4-manifolds

Definition

A symplectic 4-manifold (X, ω) is an oriented, smooth, 4-dimensional manifold X equipped with a 2-form $\omega \in \Omega_X^2$ which is closed, i.e., $d\omega = 0$, and positive non-degenerate, i.e., $\omega \wedge \omega > 0$ everywhere on X.

- Our 4-manifolds will all be *compact* and *connected*.
- The conditions $d\omega = 0$ and $\omega \wedge \omega > 0$ can *individually* be understood through algebraic topology.
- Jointly, they are much more subtle. Existence of ω depends on the smooth structure, not just the homotopy-type.

・ロン ・回と ・ヨン・

Classifying complex surfaces and symplectic 4-manifolds Basics

Kähler surfaces

The 'classical' symplectic 4-manifolds are the Kähler surfaces.

Definition

A Kähler surface (X, ω) is a complex surface (modeled on open sets of \mathbb{C}^2 , holomorphic transition functions) with a symplectic form ω of type (1, 1). (locally $f(dz_1 \wedge d\overline{z}_2 + d\overline{z}_1 \wedge dz_2) + igdz_1 \wedge d\overline{z}_1 + ihdz_2 \wedge d\overline{z}_2$).

Examples:

- Complex tori: \mathbb{C}^2 /lattice, $\omega = \frac{i}{2}(dz_1 \wedge d\bar{z}_1 + dz_2 \wedge d\bar{z}_2)$.
- Projective algebraic surfaces X: cut out from CP^N by homogeneous polynomials; ω_X = restriction of standard PU(N + 1)-invariant 2-form on CP^N.

Classifying complex surfaces and symplectic 4-manifolds Basics

Parity of the first Betti number

 $b_1 = \dim H_1(X; \mathbb{R}) = \dim H^1(X; \mathbb{R}).$

Theorem

(i) (Hodge, Weil, 1930s) A Kähler surface has even b_1 .

 (ii) (Classification-free proofs due to Buchdahl, Lamari, 1999) A complex surface with b₁ even admits Kähler forms.

No such restriction exists for symplectic 4-manifolds. Let $T^2 = S^1 \times S^1$.

Example (Kodaira, Thurston)

There exists a symplectic 4-manifold X which is a symplectic T^2 -bundle $T^2 \hookrightarrow X \to T^2$ with $b_1(X) = 3$.

By a *symplectic* surface-bundle I mean that one has a global symplectic form which is positive on the fibers.

Tim Perutz

Classifying complex surfaces and symplectic 4-manifolds

Classifying complex surfaces and symplectic 4-manifolds Classification

Classification

- **Basic problem**: classify symplectic 4-manifolds. Various possible equivalence relations:
 - Symplectomorphism $f: X \to Y$ (i.e. diffeo with $f^* \omega_Y = \omega_X$)
 - Sometimes also allow symplectic deformations {ω_t}_{t∈[0,1]}.
- **Inspiration**: the *Enriques–Kodaira classification* of Kähler surfaces. To what extent does it apply to symplectic 4-manifolds?
- Tools:
 - Cut-and-paste methods (Gompf, ...).
 - Pseudo-holomorphic curves (Gromov, ...); more powerful in symbiosis with
 - Seiberg-Witten gauge theory (Taubes, ...).
 - Lefschetz pencils (Donaldson, ...).

Blowing up

If X is a complex surface and $x \in X$, the *blow-up* of X at x is a complex surface \widetilde{X}_x with a surjective holomorphic map $\pi : \widetilde{X}_x \to X$ (the *blow-down map*) such that

•
$$\pi: \pi^{-1}(X - \{x\}) \rightarrow X - \{x\}$$
 is bijective;

•
$$E := \pi^{-1}(x) \cong \mathbb{P}T_x X \cong \mathbb{C}P^1$$

•
$$N_E := T\widetilde{X}_x|_E/TE = \mathcal{O}(-1)$$
, i.e. $N_{E,\lambda} = \lambda$ for $\lambda \in \mathbb{P}T_xX$.

The infinitesimal geometry of X at x is seen macroscopically in \widetilde{X}_x .

Theorem (Castelnuovo)

If E is a smooth rational curve in a complex surface \widetilde{X} , and $\deg(N_E) = -1$, then there is a holomorphic map $\widetilde{X} \to X$ contracting E and realizing \widetilde{X} as a blow-up.

イロト イポト イヨト イヨト

Classifying complex surfaces and symplectic 4-manifolds Classification

Reduction to the minimal case

The construction of the blow-up $(\widetilde{X}_x, \widetilde{\omega})$ works in the symplectic category.

- There's now a parameter $\int_{E} \widetilde{\omega} > 0$.
- Blowing down is a natural symplectic surgery operation: if E is 2-sphere embedded in X̃, with ω̃|_E > 0 and deg(N_E) = −1, we can excise nbhd(E) and insert a 4-ball to construct X of which X̃ is a blow-up.

Definition

A complex surface (resp. symplectic 4-manifold) is called *minimal* if it can't be blown down in the complex (resp. symplectic) sense.

Blowing down reduces b_2 by 1. Starting from a given X, we can blow it down a finite number of times to obtain a minimal X'. With certain easy exceptions, X' is determined by X,

The Enriques-Kodaira classification

Idea: distinguish *minimal* complex surfaces, with b_1 even, by the following measure:

How positive is the canonical line-bundle \mathcal{K}_X ?

- $\mathcal{K}_X = \Lambda^2_{\mathbb{C}} T^* X$. Local sections $f dz_1 \wedge dz_2$.
- Positivity of line-bundles is a big topic in algebraic geometry, with many related notions of positivity. Here it means: how fast does the dimension of the space of holomorphic sections $H^0(\mathcal{K}^{\otimes m}_X)$ grow as $m \to \infty$?
- For complex curves C, one has $\mathcal{K}_C = T^*C$ and for m > 0,
 - $\mathbb{C}P^1$: \mathcal{K} negative, $H^0(\mathcal{K}^{\otimes m}) = 0$;
 - elliptic curves: \mathcal{K} zero; dim $H^0(\mathcal{K}^{\otimes m}) = 1$;
 - genus g > 1: $\mathcal K$ positive; for m > 1,

$$\dim H^0(\mathcal{K}^{\otimes m}) = (g-1)(2m-1) = O(m).$$

Tim Perutz

Dichotomy

The coarsest part of the Enriques–Kodaira classification is the Kodaira negative/non-negative dichotomy.

Definition

A minimal complex surface X is Kodaira-negative if $H^0(\mathcal{K}_X^{\otimes m}) = 0$ for all m > 0. Otherwise, it's Kodaira-non-negative.

There are other conditions which, not at all obviously, are equivalent to Kodaira negativity. They involve the the *canonical class* $K_X = c_1(\mathcal{K}_X) \in H^2(X; \mathbb{Z})$:

- There's a complex curve $C \subset X$ such that $\langle K_X, [C] \rangle < 0$.
- Either $K_X \cdot K_X < 0$ or, for each Kähler form ω , one has $K_X \cdot \omega < 0$.

Kodaira-negative surfaces

Theorem

Let X be a minimal complex surface, b_1 even.

- (i) (Castelnuovo): If X is Kodaira-negative and K_X · K_X > 0 then X is either CP² or a holomorphic CP¹-bundle over CP¹.
- (ii) (Castelnuovo–de Franchis): If X is Kodaira-negative and K_X · K_X ≤ 0 then X is a holomorphic CP¹-bundle over a curve.

소리가 소문가 소문가 소문가

Symplectic Kodaira negativity

No holomorphic charts in the symplectic case, but we can make T^*X a complex vector bundle via an ω -compatible *almost complex* structure $J \in \text{End}(TX)$, $J^2 = -I$. Define $K_X = c_1(\Lambda_{\mathbb{C}}^2 T^*X)$.

Definition

A minimal symplectic 4-manifold (X, ω) is *Kodaira-negative* if $K_X \cdot \omega < 0$ or $K_X \cdot K_X < 0$.

Theorem (Aiko Liu, building on Gromov, McDuff, Taubes, Li–Liu)

Let (X, ω) be a minimal, Kodaira negative symplectic 4-manifold.

- (i) If $K_X \cdot K_X > 0$ then either X is symplectomorphic to $(\mathbb{C}P^2, r \cdot \omega_{std})$, or X is a symplectic S²-bundle over S².
- (ii) (Gompf's conjecture). If $K_X \cdot K_X \le 0$ then X is a symplectic S^2 -bundle over a surface.

Kodaira-negative manifolds are S^2 -bundles: strategy

- Pick a compatible almost complex structure J ∈ End(TX). Suppose we can find a J-holomorphic 2-sphere C ⊂ X (meaning that J(TC) = TC) such that deg N_C = 1 (like a line in CP²) or 0 (like a fiber).
- Say deg N_C = 0. We have a 2-dimensional moduli space M of J-holomorphic spheres C' homologous to C, filling up an open subset X' ⊂ X by Fredholm theory. If ∫_C ω is minimal, X' is also closed by Gromov compactness, so X' = X.
- No two spheres C', C'' ∈ M intersect, because local intersection multiplicities of J-holomorphic curves are positive but [C'] · [C''] = deg(N_C) = 0.
- Mapping $x \in X$ to the unique $C \in \mathcal{M}$ on which it lies defines a symplectic bundle $S^2 \hookrightarrow X \to \mathcal{M}$.

(ロ) (同) (E) (E) (E)

... And then a miracle occurs

All this was posited on the existence of C.

• Existence of a suitable *J*-holomorphic sphere *C* in Kodaira-negative manifolds requires **magic**:

the Seiberg-Witten equations.

- Specifically, use the SW wall-crossing formula to find cheap solutions, and Taubes's analysis to convert them to solutions localized on *J*-holomorphic curves.
- When $K_X^2 < 0$, the abelian instanton solutions to the SW equations play a role like that of the Albanese torus in the Castelnuovo-de Franchis theorem.

・ロン ・回 と ・ ヨ と ・ ヨ と

Kodaira dimension

X: minimal complex surface. We define its Kodaira dimension by

$$\operatorname{kod}(X) = \limsup \frac{\log P_n}{\log n}, \quad P_n := \dim H^0(\mathfrak{K}_X^{\otimes n}).$$

Kodaira negative means $kod(X) = -\infty$. When X is Kodaira-non-negative, the possibilities are

- $\operatorname{kod}(X) = 0 \Leftrightarrow \sup P_n = 1 \Leftrightarrow K_X$ is torsion in $H^2(X; \mathbb{Z})$; or
- kod(X) = 1. This means that P_n grows linearly; or
- kod(X) = 2. This means that P_n grows quadratically.

Kodaira dimension zero

Theorem (Enriques–Kodaira classification plus 'Torelli' theorems)

If X is a complex surface with K_X torsion then X belongs to one of the following types:

- K3 surfaces: K_X trivial, b₁(X) = 0. One deformation class (that of a quartic surface in CP³).
- Enriques surfaces: K_X non-trivial, 2K_X trivial, b₁(X) = 0.
 One deformation class.
- Complex tori: $\mathbb{C}^2/(\text{lattice})$. One deformation class.
- Bi-elliptic and Kodaira surfaces: A non-trivial holomorphic fibre bundle over an elliptic curve, whose typical fiber is a genus 1 curve. Several deformation classes.

イロン イヨン イヨン イヨン

Symplectic Kodaira dimension 0

Conjecture

If X is symplectic and K_X torsion then X is diffeomorphic to a K3 surface, an Enriques surface, or a symplectic T^2 -bundle over T^2 .

Theorem (S. Bauer, T.-J. Li, generalizing Morgan–Szabó)

If X is symplectic and K_X torsion then $b^+(X) \le 3$. Consequently, $b_1(X) \le 4$.

 b^+ is the dimension of a maximal subspace of $H^2_{dR}(X)$ on which the quadratic form $Q(\alpha) = \int_X \alpha \wedge \alpha$ is positive-definite. $b^+(K3) = 3$, $b^+(\text{Enriques}) = 1$.

The proofs use Seiberg–Witten theory—the quaternionic symmetry of the SW equations on a spin 4-manifold, the Bauer–Furuta homotopical SW theory, and the existence of a canonical SW solution when X is symplectic.

Tim Perutz

Classifying complex surfaces and symplectic 4-manifolds

Symplectic Kodaira dimension 0

Conjecture

If X is symplectic and K_X torsion then X is diffeomorphic to a K3 surface, an Enriques surface, or a symplectic T^2 -bundle over T^2 .

Perhaps the conjecture can be demolished by a construction. Otherwise, it seems hard.

A weaker conjecture, perhaps more accessible (though SW theory?) is the following:

Conjecture

If K_X is torsion and $b_1(X) \leq 1$ then $2K_X = 0$.

イロト イポト イヨト イヨト

Kodaira dimension 1

Kodaira dimension 1 (for a minimal complex surface) X means that P_m grows like am + b. In this case, one can associate a *canonical curve C* with X,

$$\mathcal{C} = \operatorname{Proj}\left(\bigoplus_{m \geq 0} H^0(\mathfrak{K}_X^{\otimes m})
ight),$$

along with a map $X \rightarrow C$. Tweaking this construction one finds

Theorem

There's a holomorphic map $X \to B$ onto a curve B, such that K_X is trivial on the smooth fibers, which consequently have genus 1. Moreover, $X \to B$ has a section.

Deformation classes of such *elliptic surfaces* have been classified.

Symplectic Kodaira dimension 1

Definition

A minimal symplectic manifold (X, ω) has Kodaira dimension 1 if $K_X \cdot \omega > 0$ and $K_X \cdot K_X = 0$.

This agrees with the usual definition in the Kähler case. But the situation regarding classification is radically different.

Theorem (Gompf)

For any finite presentation $\langle g_1, \ldots, g_k | r_1, \ldots, r_\ell \rangle$ of a group G, one can construct a minimal symplectic 4-manifold X_P of Kodaira dimension 1 and an isomorphism $\pi_1(X_P) \cong G$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Symplectic Kodaira dimension 1

Theorem (Gompf)

For any finite presentation $\langle g_1, \ldots, g_k \mid r_1, \ldots, r_\ell \rangle$ of a group G, one can construct a minimal symplectic 4-manifold X_P of Kodaira dimension 1 and an isomorphism $\pi_1(X_P) \cong G$.

- Distinguishing homotopy-types of 4-manifolds X which admit symplectic forms is therefore an algorithmically unsolvable problem. That's because an algorithm that could decide whether $\pi_1(X) = 1$ would solve the unsolvable halting problem will a Turing machine halt on a given program and input?.
- The construction uses a cut-and-paste method called symplectic sum. You start with a product $T^2 \times \Sigma_k$, and kill generators of π_1 by judicious symplectic sums along tori with a standard manifold $\mathbb{C}P^2 \# 9\overline{\mathbb{C}P^2}$.

Kodaira dimension 2 ('general type')

- On minimal surfaces of general type, P_m grows quadratically.
- 'Most' surfaces have general type (e.g. hypersurface in CP³ cut out by a homogeneous polynomial of degree > 4).
- There's no classification.

Theorem (Grothendieck-Bombieri)

Only finitely many deformation classes of general type surfaces share the same numbers $K \cdot K$ and e (= topological Euler characteristic).

Theorem

Minimal surfaces of general type satisfy

- (i) (M. Noether) $5K^2 e + 36 \ge 6b_1$.
- (ii) (Bogomolov–Miyaoka–Yau) $K^2 \leq 3e$.

Symplectic Kodaira dimension 2

On a minimal general type surface, for all Kähler forms ω , one has $K_X \cdot \omega > 0$ and $K_X \cdot K_X > 0$.

Definition

A minimal symplectic 4-manifold (X, ω) has Kodaira dimension 2 if $K_X \cdot \omega > 0$ and $K_X \cdot K_X > 0$.

- π_1 unconstrained.
- Few interesting invariants known, e.g. Gromov-Witten invariants seem to be rather uninformative.
- Noether's inequality is false.

Conjecture (Fintushel-Stern(?))

The BMY inequality $K \cdot K \leq 3e$ holds.

Summary

- Reduction to minimal manifolds works similarly in complex and symplectic categories.
- Kodaira-negative manifolds are S^2 -bundles in both cases.
- Symplectic Kodaira-dimension 0 is on the cusp of our understanding. There *might* be a simple classification.
- Symplectic Kodaira dimension 1 is wild. (Better if we assume π_1 trivial?)
- Symplectic Kodaira dimension 2 is wild too, but we can ask for numerical constraints such as the conjectural symplectic BMY inequality.