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Classifying complex surfaces and symplectic 4-manifolds

Basics

Symplectic 4-manifolds

Definition

A symplectic 4-manifold (X , ω) is an oriented, smooth,
4-dimensional manifold X equipped with a 2-form ω ∈ Ω2

X which is
closed, i.e., dω = 0, and positive non-degenerate, i.e., ω ∧ ω > 0
everywhere on X .

Our 4-manifolds will all be compact and connected.

The conditions dω = 0 and ω ∧ ω > 0 can individually be
understood through algebraic topology.

Jointly, they are much more subtle. Existence of ω depends
on the smooth structure, not just the homotopy-type.
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Basics

Kähler surfaces

The ‘classical’ symplectic 4-manifolds are the Kähler surfaces.

Definition

A Kähler surface (X , ω) is a complex surface
(modeled on open sets of C2, holomorphic transition functions)
with a symplectic form ω of type (1, 1).
(locally f (dz1 ∧ dz̄2 + dz̄1 ∧ dz2) + igdz1 ∧ dz̄1 + ihdz2 ∧ dz̄2).

Examples:

Complex tori: C2/lattice, ω = i
2(dz1 ∧ dz̄1 + dz2 ∧ dz̄2).

Projective algebraic surfaces X : cut out from CPN by
homogeneous polynomials; ωX = restriction of standard
PU(N + 1)-invariant 2-form on CPN .
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Parity of the first Betti number

b1 = dim H1(X ;R) = dim H1(X ;R).

Theorem

(i) (Hodge, Weil, 1930s) A Kähler surface has even b1.

(ii) (Classification-free proofs due to Buchdahl, Lamari, 1999) A
complex surface with b1 even admits Kähler forms.

No such restriction exists for symplectic 4-manifolds. Let
T 2 = S1 × S1.

Example (Kodaira, Thurston)

There exists a symplectic 4-manifold X which is a symplectic
T 2-bundle T 2 ↪→ X → T 2 with b1(X ) = 3.

By a symplectic surface-bundle I mean that one has a global
symplectic form which is positive on the fibers.
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Classification

Classification

Basic problem: classify symplectic 4-manifolds. Various
possible equivalence relations:

Symplectomorphism f : X → Y (i.e. diffeo with f ∗ωY = ωX )
Sometimes also allow symplectic deformations {ωt}t∈[0,1].

Inspiration: the Enriques–Kodaira classification of Kähler
surfaces. To what extent does it apply to symplectic
4-manifolds?

Tools:

Cut-and-paste methods (Gompf, ...).
Pseudo-holomorphic curves (Gromov, ...); more powerful in
symbiosis with
Seiberg–Witten gauge theory (Taubes, ...).
Lefschetz pencils (Donaldson, ...).
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Blowing up

If X is a complex surface and x ∈ X , the blow-up of X at x is a
complex surface X̃x with a surjective holomorphic map π : X̃x → X
(the blow-down map) such that

π : π−1(X − {x})→ X − {x} is bijective;

E := π−1(x) ∼= PTxX ∼= CP1.

NE := T X̃x |E/TE = O(−1), i.e. NE ,λ = λ for λ ∈ PTxX .

The infinitesimal geometry of X at x is seen macroscopically in X̃x .

Theorem (Castelnuovo)

If E is a smooth rational curve in a complex surface X̃ , and
deg(NE ) = −1, then there is a holomorphic map X̃ → X
contracting E and realizing X̃ as a blow-up.
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Reduction to the minimal case

The construction of the blow-up (X̃x , ω̃) works in the symplectic
category.

There’s now a parameter
∫
E ω̃ > 0.

Blowing down is a natural symplectic surgery operation: if E
is 2-sphere embedded in X̃ , with ω̃|E > 0 and deg(NE ) = −1,
we can excise nbhd(E ) and insert a 4-ball to construct X of
which X̃ is a blow-up.

Definition

A complex surface (resp. symplectic 4-manifold) is called minimal
if it can’t be blown down in the complex (resp. symplectic) sense.

Blowing down reduces b2 by 1. Starting from a given X , we can
blow it down a finite number of times to obtain a minimal X ′.
With certain easy exceptions, X ′ is determined by X .
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The Enriques–Kodaira classification

Idea: distinguish minimal complex surfaces, with b1 even, by the
following measure:

How positive is the canonical line-bundle KX ?

KX = Λ2
CT ∗X . Local sections f dz1 ∧ dz2.

Positivity of line-bundles is a big topic in algebraic geometry,
with many related notions of positivity. Here it means:
how fast does the dimension of the space of holomorphic
sections H0(K⊗mX ) grow as m→∞?
For complex curves C , one has KC = T ∗C and for m > 0,

CP1: K negative, H0(K⊗m) = 0;
elliptic curves: K zero; dim H0(K⊗m) = 1;
genus g > 1: K positive; for m > 1,

dim H0(K⊗m) = (g − 1)(2m − 1) = O(m).
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Kodaira-negative manifolds

Dichotomy

The coarsest part of the Enriques–Kodaira classification is the
Kodaira negative/non-negative dichotomy.

Definition

A minimal complex surface X is Kodaira-negative if H0(K⊗mX ) = 0
for all m > 0. Otherwise, it’s Kodaira-non-negative.

There are other conditions which, not at all obviously, are
equivalent to Kodaira negativity. They involve the the canonical
class KX = c1(KX ) ∈ H2(X ;Z):

There’s a complex curve C ⊂ X such that 〈KX , [C ]〉 < 0.

Either KX · KX < 0 or, for each Kähler form ω, one has
KX · ω < 0.
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Kodaira-negative manifolds

Kodaira-negative surfaces

Theorem

Let X be a minimal complex surface, b1 even.

(i) (Castelnuovo): If X is Kodaira-negative and KX ·KX > 0 then
X is either CP2 or a holomorphic CP1-bundle over CP1.

(ii) (Castelnuovo–de Franchis): If X is Kodaira-negative and
KX · KX ≤ 0 then X is a holomorphic CP1-bundle over a
curve.
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Kodaira-negative manifolds

Symplectic Kodaira negativity

No holomorphic charts in the symplectic case, but we can make
T ∗X a complex vector bundle via an ω-compatible almost complex
structure J ∈ End(TX ), J2 = −I . Define KX = c1(Λ2

CT ∗X ).

Definition

A minimal symplectic 4-manifold (X , ω) is Kodaira-negative if
KX · ω < 0 or KX · KX < 0.

Theorem (Aiko Liu, building on Gromov, McDuff, Taubes, Li–Liu)

Let (X , ω) be a minimal, Kodaira negative symplectic 4-manifold.

(i) If KX · KX > 0 then either X is symplectomorphic to
(CP2, r · ωstd), or X is a symplectic S2-bundle over S2.

(ii) (Gompf’s conjecture). If KX · KX ≤ 0 then X is a symplectic
S2-bundle over a surface.
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Kodaira-negative manifolds are S2-bundles: strategy

Pick a compatible almost complex structure J ∈ End(TX ).
Suppose we can find a J-holomorphic 2-sphere C ⊂ X
(meaning that J(TC ) = TC ) such that deg NC = 1 (like a
line in CP2) or 0 (like a fiber).

Say deg NC = 0. We have a 2-dimensional moduli space M of
J-holomorphic spheres C ′ homologous to C , filling up an open
subset X ′ ⊂ X by Fredholm theory. If

∫
C ω is minimal, X ′ is

also closed by Gromov compactness, so X ′ = X .

No two spheres C ′, C ′′ ∈M intersect, because local
intersection multiplicities of J-holomorphic curves are positive
but [C ′] · [C ′′] = deg(NC ) = 0.

Mapping x ∈ X to the unique C ∈M on which it lies defines
a symplectic bundle S2 ↪→ X →M.
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Kodaira-negative manifolds

... And then a miracle occurs

All this was posited on the existence of C .

Existence of a suitable J-holomorphic sphere C in
Kodaira-negative manifolds requires magic:

the Seiberg–Witten equations.

Specifically, use the SW wall-crossing formula to find cheap
solutions, and Taubes’s analysis to convert them to solutions
localized on J-holomorphic curves.

When K 2
X < 0, the abelian instanton solutions to the SW

equations play a role like that of the Albanese torus in the
Castelnuovo–de Franchis theorem.
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Kodaira non-negative manifolds

Kodaira dimension

X : minimal complex surface. We define its Kodaira dimension by

kod(X ) = lim sup
log Pn

log n
, Pn := dim H0(K⊗nX ).

Kodaira negative means kod(X ) = −∞. When X is
Kodaira-non-negative, the possibilities are

kod(X ) = 0⇔ sup Pn = 1⇔ KX is torsion in H2(X ;Z); or

kod(X ) = 1. This means that Pn grows linearly; or

kod(X ) = 2. This means that Pn grows quadratically.
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Kodaira dimension zero

Theorem (Enriques–Kodaira classification plus ‘Torelli’ theorems)

If X is a complex surface with KX torsion then X belongs to one
of the following types:

K3 surfaces: KX trivial, b1(X ) = 0. One deformation class
(that of a quartic surface in CP3).

Enriques surfaces: KX non-trivial, 2KX trivial, b1(X ) = 0.
One deformation class.

Complex tori: C2/(lattice). One deformation class.

Bi-elliptic and Kodaira surfaces: A non-trivial holomorphic
fibre bundle over an elliptic curve, whose typical fiber is a
genus 1 curve. Several deformation classes.
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Symplectic Kodaira dimension 0

Conjecture

If X is symplectic and KX torsion then X is diffeomorphic to a K3
surface, an Enriques surface, or a symplectic T 2-bundle over T 2.

Theorem (S. Bauer, T.-J. Li, generalizing Morgan–Szabó)

If X is symplectic and KX torsion then b+(X ) ≤ 3. Consequently,
b1(X ) ≤ 4.

b+ is the dimension of a maximal subspace of H2
dR(X ) on which

the quadratic form Q(α) =
∫
X α ∧ α is positive-definite.

b+(K 3) = 3, b+(Enriques) = 1.
The proofs use Seiberg–Witten theory—the quaternionic symmetry
of the SW equations on a spin 4-manifold, the Bauer–Furuta
homotopical SW theory, and the existence of a canonical SW
solution when X is symplectic.
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Symplectic Kodaira dimension 0

Conjecture

If X is symplectic and KX torsion then X is diffeomorphic to a K3
surface, an Enriques surface, or a symplectic T 2-bundle over T 2.

Perhaps the conjecture can be demolished by a construction.
Otherwise, it seems hard.
A weaker conjecture, perhaps more accessible (though SW
theory?) is the following:

Conjecture

If KX is torsion and b1(X ) ≤ 1 then 2KX = 0.
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Kodaira non-negative manifolds

Kodaira dimension 1

Kodaira dimension 1 (for a minimal complex surface) X means
that Pm grows like am + b. In this case, one can associate a
canonical curve C with X ,

C = Proj

⊕
m≥0

H0(K⊗mX )

 ,

along with a map X → C . Tweaking this construction one finds

Theorem

There’s a holomorphic map X → B onto a curve B, such that KX

is trivial on the smooth fibers, which consequently have genus 1.
Moreover, X → B has a section.

Deformation classes of such elliptic surfaces have been classified.
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Symplectic Kodaira dimension 1

Definition

A minimal symplectic manifold (X , ω) has Kodaira dimension 1 if
KX · ω > 0 and KX · KX = 0.

This agrees with the usual definition in the Kähler case. But the
situation regarding classification is radically different.

Theorem (Gompf)

For any finite presentation 〈g1, . . . , gk | r1, . . . , r`〉 of a group G ,
one can construct a minimal symplectic 4-manifold XP of Kodaira
dimension 1 and an isomorphism π1(XP) ∼= G .
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Kodaira non-negative manifolds

Symplectic Kodaira dimension 1

Theorem (Gompf)

For any finite presentation 〈g1, . . . , gk | r1, . . . , r`〉 of a group G ,
one can construct a minimal symplectic 4-manifold XP of Kodaira
dimension 1 and an isomorphism π1(XP) ∼= G .

Distinguishing homotopy-types of 4-manifolds X which admit
symplectic forms is therefore an algorithmically unsolvable
problem. That’s because an algorithm that could decide
whether π1(X ) = 1 would solve the unsolvable halting problem
will a Turing machine halt on a given program and input?.

The construction uses a cut-and-paste method called
symplectic sum. You start with a product T 2 × Σk , and kill
generators of π1 by judicious symplectic sums along tori with
a standard manifold CP2#9CP2.
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Kodaira dimension 2 (‘general type’)

On minimal surfaces of general type, Pm grows quadratically.

‘Most’ surfaces have general type (e.g. hypersurface in CP3

cut out by a homogeneous polynomial of degree > 4).

There’s no classification.

Theorem (Grothendieck–Bombieri)

Only finitely many deformation classes of general type surfaces
share the same numbers K · K and e (= topological Euler
characteristic).

Theorem

Minimal surfaces of general type satisfy

(i) (M. Noether) 5K 2 − e + 36 ≥ 6b1.

(ii) (Bogomolov–Miyaoka–Yau) K 2 ≤ 3e.
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Kodaira non-negative manifolds

Symplectic Kodaira dimension 2

On a minimal general type surface, for all Kähler forms ω, one has
KX · ω > 0 and KX · KX > 0.

Definition

A minimal symplectic 4-manifold (X , ω) has Kodaira dimension 2
if KX · ω > 0 and KX · KX > 0.

π1 unconstrained.

Few interesting invariants known, e.g. Gromov–Witten
invariants seem to be rather uninformative.

Noether’s inequality is false.

Conjecture (Fintushel–Stern(?))

The BMY inequality K · K ≤ 3e holds.
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Summary

Reduction to minimal manifolds works similarly in complex
and symplectic categories.

Kodaira-negative manifolds are S2-bundles in both cases.

Symplectic Kodaira-dimension 0 is on the cusp of our
understanding. There might be a simple classification.

Symplectic Kodaira dimension 1 is wild. (Better if we assume
π1 trivial?)

Symplectic Kodaira dimension 2 is wild too, but we can ask
for numerical constraints such as the conjectural symplectic
BMY inequality.
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